RESUMO
Current prophylactic human immunodeficiency virus 1 (HIV-1) vaccine research aims to elicit broadly neutralizing antibodies (bnAbs). Membrane-proximal external region (MPER)-targeting bnAbs, such as 10E8, provide exceptionally broad neutralization, but some are autoreactive. Here, we generated humanized B cell antigen receptor knock-in mouse models to test whether a series of germline-targeting immunogens could drive MPER-specific precursors toward bnAbs. We found that recruitment of 10E8 precursors to germinal centers (GCs) required a minimum affinity for germline-targeting immunogens, but the GC residency of MPER precursors was brief due to displacement by higher-affinity endogenous B cell competitors. Higher-affinity germline-targeting immunogens extended the GC residency of MPER precursors, but robust long-term GC residency and maturation were only observed for MPER-HuGL18, an MPER precursor clonotype able to close the affinity gap with endogenous B cell competitors in the GC. Thus, germline-targeting immunogens could induce MPER-targeting antibodies, and B cell residency in the GC may be regulated by a precursor-competitor affinity gap.
Assuntos
Afinidade de Anticorpos , Linfócitos B , Centro Germinativo , Anticorpos Anti-HIV , HIV-1 , Centro Germinativo/imunologia , Animais , Camundongos , Humanos , Linfócitos B/imunologia , HIV-1/imunologia , Anticorpos Anti-HIV/imunologia , Afinidade de Anticorpos/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Vacinas contra a AIDS/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Técnicas de Introdução de Genes , Camundongos Transgênicos , Anticorpos Amplamente Neutralizantes/imunologia , Camundongos Endogâmicos C57BLRESUMO
A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.
Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Infecções por HIV , HIV-1 , Macaca mulatta , Animais , Humanos , Proteína gp41 do Envelope de HIV/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Vacinação , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos B/imunologia , Nanopartículas/química , Feminino , Regiões Determinantes de Complementaridade/imunologia , Epitopos/imunologiaRESUMO
The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from 10 COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb, CV07-209, neutralized authentic SARS-CoV-2 with an IC50 value of 3.1 ng/mL. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Å revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2-neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss, and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/metabolismo , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/uso terapêutico , Reações Antígeno-Anticorpo , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cricetinae , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
The HIV-1-envelope (Env) trimer is covered by a glycan shield of â¼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer.
Assuntos
HIV-1/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Cristalografia por Raios X , Glicosilação , HIV-1/classificação , HIV-1/imunologia , Evasão da Resposta Imune , Modelos Moleculares , Simulação de Dinâmica Molecular , Polissacarídeos/análise , Polissacarídeos/metabolismoRESUMO
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
Assuntos
Complemento C1q/imunologia , Citotoxicidade Imunológica/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoterapia , Neoplasias/tratamento farmacológico , Fagocitose/imunologia , Receptores de IgG/imunologia , Animais , Anticorpos Monoclonais , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/imunologia , Linhagem Celular Tumoral , Cromatografia em Gel , Cromatografia Líquida , Complemento C1q/metabolismo , Cristalização , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Técnicas In Vitro , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/imunologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/imunologia , Espectrometria de Massas , Camundongos , Neoplasias/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de IgG/metabolismo , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em TandemRESUMO
Most antibodies isolated from individuals with coronavirus disease 2019 (COVID-19) are specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, COVA1-16 is a relatively rare antibody that also cross-neutralizes SARS-CoV. Here, we determined a crystal structure of the COVA1-16 antibody fragment (Fab) with the SARS-CoV-2 receptor-binding domain (RBD) and negative-stain electron microscopy reconstructions with the spike glycoprotein trimer to elucidate the structural basis of its cross-reactivity. COVA1-16 binds a highly conserved epitope on the SARS-CoV-2 RBD, mainly through a long complementarity-determining region (CDR) H3, and competes with the angiotensin-converting enzyme 2 (ACE2) receptor because of steric hindrance rather than epitope overlap. COVA1-16 binds to a flexible up conformation of the RBD on the spike and relies on antibody avidity for neutralization. These findings, along with the structural and functional rationale for epitope conservation, provide insights for development of more universal SARS-like coronavirus vaccines and therapies.
Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/metabolismo , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Anticorpos Antivirais/genética , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/metabolismo , Sequência Conservada/genética , Reações Cruzadas , Cristalização , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/genéticaRESUMO
BACKGROUND: Despite consistent recommendations from clinical guidelines, data from randomized trials on a long-term antithrombotic treatment strategy for patients with atrial fibrillation and stable coronary artery disease are still lacking. METHODS: We conducted a multicenter, open-label, adjudicator-masked, randomized trial comparing edoxaban monotherapy with dual antithrombotic therapy (edoxaban plus a single antiplatelet agent) in patients with atrial fibrillation and stable coronary artery disease (defined as coronary artery disease previously treated with revascularization or managed medically). The risk of stroke was assessed on the basis of the CHA2DS2-VASc score (scores range from 0 to 9, with higher scores indicating a greater risk of stroke). The primary outcome was a composite of death from any cause, myocardial infarction, stroke, systemic embolism, unplanned urgent revascularization, and major bleeding or clinically relevant nonmajor bleeding at 12 months. Secondary outcomes included a composite of major ischemic events and the safety outcome of major bleeding or clinically relevant nonmajor bleeding. RESULTS: We assigned 524 patients to the edoxaban monotherapy group and 516 patients to the dual antithrombotic therapy group at 18 sites in South Korea. The mean age of the patients was 72.1 years, 22.9% were women, and the mean CHA2DS2-VASc score was 4.3. At 12 months, a primary-outcome event had occurred in 34 patients (Kaplan-Meier estimate, 6.8%) assigned to edoxaban monotherapy and in 79 patients (16.2%) assigned to dual antithrombotic therapy (hazard ratio, 0.44; 95% confidence interval [CI], 0.30 to 0.65; P<0.001). The cumulative incidence of major ischemic events at 12 months appeared to be similar in the trial groups. Major bleeding or clinically relevant nonmajor bleeding occurred in 23 patients (Kaplan-Meier estimate, 4.7%) in the edoxaban monotherapy group and in 70 patients (14.2%) in the dual antithrombotic therapy group (hazard ratio, 0.34; 95% CI, 0.22 to 0.53). CONCLUSIONS: In patients with atrial fibrillation and stable coronary artery disease, edoxaban monotherapy led to a lower risk of a composite of death from any cause, myocardial infarction, stroke, systemic embolism, unplanned urgent revascularization, or major bleeding or clinically relevant nonmajor bleeding at 12 months than dual antithrombotic therapy. (Funded by the CardioVascular Research Foundation and others; EPIC-CAD ClinicalTrials.gov number, NCT03718559.).
RESUMO
Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center. Somatic hypermutation occurred preferentially at antibody residues that interacted with these glycans, suggesting somatic development of glycan recognition. Resistance to VRC-PG05 in donor #74 involved shifting of glycan-N448 to N446 or mutation of glycan-proximal residue E293. HIV-1 neutralization can thus be achieved at the silent face center by glycan-recognizing antibody; along with other known epitopes, the VRC-PG05 epitope completes coverage by neutralizing antibody of all major exposed regions of the prefusion closed trimer.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Polissacarídeos/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Antígenos Virais/química , Antígenos Virais/imunologia , Sítios de Ligação , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicopeptídeos/química , Glicopeptídeos/imunologia , Glicosilação , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Modelos Moleculares , Conformação Molecular , Polissacarídeos/química , Ligação Proteica/imunologia , Hipermutação Somática de Imunoglobulina/imunologia , Relação Estrutura-AtividadeRESUMO
Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.
Assuntos
Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Antivirais/farmacologia , Antivirais/química , Química Farmacêutica/métodos , Ensaios de Triagem em Larga Escala/métodos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Cristalografia por Raios X/métodos , Química Click/métodos , Animais , Vírus da Influenza A/efeitos dos fármacos , Células Madin Darby de Rim Canino , Inibidores de Proteínas Virais de Fusão/farmacologia , Inibidores de Proteínas Virais de Fusão/química , CãesRESUMO
Innate immune responses such as phagocytosis are critically linked to the generation of adaptive immune responses against the neoantigens in cancer and the efferocytosis that is essential for homeostasis in diseases characterized by lung injury, inflammation, and remodeling as in chronic obstructive pulmonary disease (COPD). Chitinase 3-like-1 (CHI3L1) is induced in many cancers where it inhibits adaptive immune responses by stimulating immune checkpoint molecules (ICPs) and portends a poor prognosis. CHI3L1 is also induced in COPD where it regulates epithelial cell death. In this study, we demonstrate that pulmonary melanoma metastasis inhibits macrophage phagocytosis by stimulating the CD47-SIRPα and CD24-Siglec10 phagocytosis checkpoint pathways while inhibiting macrophage "eat me" signals from calreticulin and HMGB1. We also demonstrate that these effects on macrophage phagocytosis are associated with CHI3L1 stimulation of the SHP-1 and SHP-2 phosphatases and inhibition of the accumulation and phosphorylation of cytoskeleton-regulating nonmuscle myosin IIa. This inhibition of innate immune responses such as phagocytosis provides a mechanistic explanation for the ability of CHI3L1 to stimulate ICPs and inhibit adaptive immune responses in cancer and diseases such as COPD. The ability of CHI3L1 to simultaneously inhibit innate immune responses, stimulate ICPs, inhibit T cell costimulation, and regulate a number of other oncogenic and inflammation pathways suggests that CHI3L1-targeted therapeutics are promising interventions in cancer, COPD, and other disorders.
Assuntos
Antígeno CD47 , Proteína 1 Semelhante à Quitinase-3 , Imunidade Inata , Fagocitose , Receptores Imunológicos , Animais , Fagocitose/imunologia , Camundongos , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Imunidade Inata/imunologia , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/imunologia , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/imunologia , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Antígenos de Diferenciação/imunologia , Humanos , Lectinas/metabolismo , Lectinas/imunologia , Linhagem Celular TumoralRESUMO
Decrease in processing speed due to increased resistance and capacitance delay is a major obstacle for the down-scaling of electronics1-3. Minimizing the dimensions of interconnects (metal wires that connect different electronic components on a chip) is crucial for the miniaturization of devices. Interconnects are isolated from each other by non-conducting (dielectric) layers. So far, research has mostly focused on decreasing the resistance of scaled interconnects because integration of dielectrics using low-temperature deposition processes compatible with complementary metal-oxide-semiconductors is technically challenging. Interconnect isolation materials must have low relative dielectric constants (κ values), serve as diffusion barriers against the migration of metal into semiconductors, and be thermally, chemically and mechanically stable. Specifically, the International Roadmap for Devices and Systems recommends4 the development of dielectrics with κ values of less than 2 by 2028. Existing low-κ materials (such as silicon oxide derivatives, organic compounds and aerogels) have κ values greater than 2 and poor thermo-mechanical properties5. Here we report three-nanometre-thick amorphous boron nitride films with ultralow κ values of 1.78 and 1.16 (close to that of air, κ = 1) at operation frequencies of 100 kilohertz and 1 megahertz, respectively. The films are mechanically and electrically robust, with a breakdown strength of 7.3 megavolts per centimetre, which exceeds requirements. Cross-sectional imaging reveals that amorphous boron nitride prevents the diffusion of cobalt atoms into silicon under very harsh conditions, in contrast to reference barriers. Our results demonstrate that amorphous boron nitride has excellent low-κ dielectric characteristics for high-performance electronics.
RESUMO
Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is a central protein in necroptosis, but posttranslational processes that regulate RIP3 activity and stability remain poorly understood. Here, we identify pellino E3 ubiquitin protein ligase 1 (PELI1) as an E3 ligase that targets RIP3 for proteasome-dependent degradation. Phosphorylation of RIP3 on T182 leads to interaction with the forkhead-associated (FHA) domain of PELI1 and PELI1-mediated K48-linked polyubiquitylation of RIP3 on K363. This same phosphorylation event is also important for RIP3 kinase activity; thus, PELI1 preferentially targets kinase-active RIP3 for degradation. PELI1-mediated RIP3 degradation effectively prevents cell death triggered by RIP3 hyperactivation. Importantly, upregulated RIP3 expression in keratinocytes from toxic epidermal necrolysis (TEN) patients is correlated with low expression of PELI1, suggesting that loss of PELI1 may play a role in the pathogenesis of TEN. We propose that PELI1 may function to control inadvertent activation of RIP3, thus preventing aberrant cell death and maintaining cellular homeostasis.
Assuntos
Queratinócitos/enzimologia , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Síndrome de Stevens-Johnson/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Morte Celular , Fibroblastos/enzimologia , Fibroblastos/patologia , Células HEK293 , Células HT29 , Células HeLa , Humanos , Queratinócitos/patologia , Camundongos , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Síndrome de Stevens-Johnson/genética , Síndrome de Stevens-Johnson/patologia , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
BACKGROUND: Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS: We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS: Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS: These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.
Assuntos
Diferenciação Celular , Linhagem da Célula , Miócitos Cardíacos , Neurofibromina 2 , Humanos , Miócitos Cardíacos/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Sistemas CRISPR-Cas , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologiaRESUMO
Few apoptotic corpses are seen even in tissues with high cellular turnover, leading to the notion that the capacity for engulfment in vivo is vast. Whether corpse clearance can be enhanced in vivo for potential benefit is not known. In a colonic inflammation model, we noted that the expression of the phagocytic receptor Bai1 was progressively downmodulated. Consistent with this, BAI1-deficient mice had more pronounced colitis and lower survival, with many uncleared apoptotic corpses and inflammatory cytokines within the colonic epithelium. When we engineered and tested transgenic mice overexpressing BAI1, these had fewer apoptotic cells, reduced inflammation, and attenuated disease. Boosting BAI1-mediated uptake by intestinal epithelial cells (rather than myeloid cells) was important in attenuating inflammation. A signaling-deficient BAI1 transgene could not provide a similar benefit. Collectively, these complementary genetic approaches showed that cell clearance could be boosted in vivo, with potential to regulate tissue inflammation in specific contexts.
Assuntos
Proteínas Angiogênicas/genética , Apoptose/imunologia , Colite/imunologia , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Animais , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colo/imunologia , Colo/patologia , Citocinas/imunologia , Sulfato de Dextrana , Células HCT116 , Humanos , Inflamação/imunologia , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologiaRESUMO
Deregulated metabolism is one of the hallmarks of cancer. It is well-known that tumour cells tend to metabolize glucose via glycolysis even when oxygen is available and mitochondrial respiration is functional. However, the lower energy efficiency of aerobic glycolysis with respect to mitochondrial respiration makes this behaviour, namely the Warburg effect, counter-intuitive, although it has now been recognized as source of anabolic precursors. On the other hand, there is evidence that oxygenated tumour cells could be fuelled by exogenous lactate produced from glycolysis. We employed a multi-scale approach that integrates multi-agent modelling, diffusion-reaction, stoichiometric equations, and Boolean networks to study metabolic cooperation between hypoxic and oxygenated cells exposed to varying oxygen, nutrient, and inhibitor concentrations. The results show that the cooperation reduces the depletion of environmental glucose, resulting in an overall advantage of using aerobic glycolysis. In addition, the oxygen level was found to be decreased by symbiosis, promoting a further shift towards anaerobic glycolysis. However, the oxygenated and hypoxic populations may gradually reach quasi-equilibrium. A sensitivity analysis using Latin hypercube sampling and partial rank correlation shows that the symbiotic dynamics depends on properties of the specific cell such as the minimum glucose level needed for glycolysis. Our results suggest that strategies that block glucose transporters may be more effective to reduce tumour growth than those blocking lactate intake transporters.
Assuntos
Neoplasias , Simbiose , Humanos , Glicólise , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Glucose/metabolismo , Hipóxia , OxigênioRESUMO
Immunotherapy has emerged as a mainstay in cancer therapy, yet its efficacy is constrained by the risk of immune-related adverse events. In this study, we present a nanoparticle-based delivery system that enhances the therapeutic efficacy of immunomodulatory ligands while concurrently limiting systemic toxicity. We demonstrate that extracellular vesicles (EVs), lipid bilayer enclosed particles released by cells, can be efficiently engineered via inverse electron demand Diels-Alder (iEDDA)-mediated conjugation to display multiple immunomodulatory ligands on their surface. Display of immunomodulatory ligands on the EV surface conferred substantial enhancements in signaling efficacy, particularly for tumor necrosis factor receptor superfamily (TNFRSF) agonists, where the EV surface display served as an alternative FcγR-independent approach to induce ligand multimerization and efficient receptor crosslinking. EVs displaying a complementary combination of immunotherapeutic ligands were able to shift the tumor immune milieu toward an anti-tumorigenic phenotype and significantly suppress tumor burden and increase survival in multiple models of metastatic cancer to a greater extent than an equivalent dose of free ligands. In summary, we present an EV-based delivery platform for cancer immunotherapeutic ligands that facilitates superior anti-tumor responses at significantly lower doses with fewer side effects than is possible with conventional delivery approaches.
Assuntos
Vesículas Extracelulares , Imunoterapia , Vesículas Extracelulares/metabolismo , Animais , Camundongos , Humanos , Imunoterapia/métodos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Nanopartículas/química , Ligantes , Modelos Animais de Doenças , Feminino , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
AIMS: Sirtuin 7 (SIRT7) plays an important role in tumor development, and has been characterized as a potent regulator of cellular stress. However, the effect of SIRT7 on sorafenib acquired resistance remains unclear and a possible anti-tumor mechanism beyond this process in HCC has not been clarified. We examined the therapeutic potential of SIRT7 and determined whether it functions synergistically with sorafenib to overcome chemoresistance. METHODS: Cancer Genome Atlas-liver HCC data and unbiased gene set enrichment analyses were used to identify SIRT7 as a potential effector molecule in sorafenib acquired resistance. Two types of SIRT7 chemical inhibitors were developed to evaluate its therapeutic properties when synergized with sorafenib. Mass spectrometry was performed to discover a direct target of SIRT7, DDX3X, and DDX3X deacetylation levels and protein stability were explored. Moreover, an in vivo xenograft model was used to confirm anti-tumor effect of SIRT7 and DDX3X chemical inhibitors combined with sorafenib. RESULTS: SIRT7 inhibition mediated DDX3X depletion can re-sensitize acquired sorafenib resistance by disrupting NLRP3 inflammasome assembly, finally suppressing hyperactive ERK1/2 signaling in response to NLRP3 inflammasome-mediated IL-1ß inhibition. CONCLUSIONS: SIRT7 is responsible for sorafenib acquired resistance, and its inhibition would be beneficial when combined with sorafenib by suppressing hyperactive pro-cell survival ERK1/2 signaling.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Fosforilação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sistema de Sinalização das MAP Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/farmacologiaRESUMO
The core plant microprocessor consists of DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1) and plays a pivotal role in microRNA (miRNA) biogenesis. However, the proteolytic regulation of each component remains elusive. Here, we show that HYL1-CLEAVAGE SUBTILASE 1 (HCS1) is a cytoplasmic protease for HYL1-destabilization. HCS1-excessiveness reduces HYL1 that disrupts miRNA biogenesis, while HCS1-deficiency accumulates HYL1. Consistently, we identified the HYL1K154A mutant that is insensitive to the proteolytic activity of HCS1, confirming the importance of HCS1 in HYL1 proteostasis. Moreover, HCS1-activity is regulated by light/dark transition. Under light, cytoplasmic CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase suppresses HCS1-activity. COP1 sterically inhibits HCS1 by obstructing HYL1 access into the catalytic sites of HCS1. In contrast, darkness unshackles HCS1-activity for HYL1-destabilization due to nuclear COP1 relocation. Overall, the COP1-HYL1-HCS1 network may integrate two essential cellular pathways: the miRNA-biogenetic pathway and light signaling pathway.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Brain metastases are a leading cause of death in patients with breast cancer. The lack of clinical trials and the presence of the blood-brain barrier limit therapeutic options. Furthermore, overexpression of the human epidermal growth factor receptor 2 (HER2) increases the incidence of breast cancer brain metastases (BCBM). HER2-targeting agents, such as the monoclonal antibodies trastuzumab and pertuzumab, improved outcomes in patients with breast cancer and extracranial metastases. However, continued BCBM progression in breast cancer patients highlighted the need for novel and effective targeted therapies against intracranial metastases. In this study, we engineered the highly migratory and brain tumor tropic human neural stem cells (NSCs) LM008 to continuously secrete high amounts of functional, stable, full-length antibodies against HER2 (anti-HER2Ab) without compromising the stemness of LM008 cells. The secreted anti-HER2Ab impaired tumor cell proliferation in vitro in HER2+ BCBM cells by inhibiting the PI3K-Akt signaling pathway and resulted in a significant benefit when injected in intracranial xenograft models. In addition, dual HER2 blockade using anti-HER2Ab LM008 NSCs and the tyrosine kinase inhibitor tucatinib significantly improved the survival of mice in a clinically relevant model of multiple HER2+ BCBM. These findings provide compelling evidence for the use of HER2Ab-secreting LM008 NSCs in combination with tucatinib as a promising therapeutic regimen for patients with HER2+ BCBM.