Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(9): 4674-4706, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38529583

RESUMO

High power conversion efficiency (PCE) and long-term stability are essential prerequisites for the commercialization of polymer solar cells (PSCs). Small-molecule acceptors (SMAs) are core materials that have led to recent, rapid increases in the PCEs of the PSCs. However, a critical limitation of the resulting PSCs is their poor long-term stability. Blend morphology degradation from rapid diffusion of SMAs with low glass transition temperatures (Tgs) is considered the main cause of the poor long-term stability of the PSCs. The recent emergence of oligomerized SMAs (OSMAs), composed of two or more repeating SMA units (i.e., dimerized and trimerized SMAs), has shown great promise in overcoming these challenges. This innovation in material design has enabled OSMA-based PSCs to reach impressive PCEs near 19% and exceptional long-term stability. In this review, we summarize the evolution of OSMAs, including their research background and recent progress in molecular design. In particular, we discuss the mechanisms for high PCE and stability of OSMA-based PSCs and suggest useful design guidelines for high-performance OSMAs. Furthermore, we reflect on the existing hurdles and future directions for OSMA materials towards achieving commercially viable PSCs with high PCEs and operational stabilities.

2.
J Environ Manage ; 360: 121171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749126

RESUMO

This study aims to investigate the effects of urban and forest areas measured in three dimensions on seasonal temperature over forty years in South Korean cities. We measure the urban and forest areas at the city, neighborhood, and spatially clustered levels in four periods every ten years. Using Hot Spot Analysis (Getis-Ord Gi*), this study detects the spatially clustered urban and forest areas. We establish a multilevel regression model to explore the relationship between urban and forest areas measured in three dimensions, as well as seasonal temperatures. The study shows that while spatially clustered urban and forest areas have consistent associations with the four seasonal temperatures, urban and forest areas at the city scale have different associations with the seasonal temperature, depending on the season. When spatially clustered urban areas increase by 10 km2, four seasonal temperatures increase by about 0.0016-0.0067 Celsius degree (°C); on the other hand, when spatially clustered forest areas increase by 10 km2, four seasonal temperatures decrease by about 0.0001-0.0016 °C. At the neighborhood level, urban and forest areas are negatively associated with the four seasonal temperatures. The results of this study can be utilized by urban planners and policymakers to establish land use planning or policy by providing evidence of whether land use plans should be established and at what scales to manage regional thermal environments. To alleviate seasonal warming, we recommend increasing forest areas at the neighborhood and spatially clustered levels and controlling the size of spatially clustered urban areas.


Assuntos
Cidades , Florestas , Estações do Ano , Temperatura , República da Coreia
3.
J Am Chem Soc ; 144(1): 390-399, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962798

RESUMO

Optically driven ordering transitions are rarely observed in macromolecular systems, often because of kinetic limitations. Here, we report a series of block co-oligomers (BCOs) that rapidly order and disorder at room temperature in response to optical illumination, and the absence thereof. The system is a triblock where rigid azobenzene (Azo) mesogens are attached to each end of a flexible siloxane chain. UV-induced trans-to-cis Azo isomerization, and vice versa in the absence of UV light, drive disordering and ordering of lamellar superstructures and smectic mesophases, as manifested by liquefaction and solidification of the material, respectively. The impacts of chemical structure on BCO self-assembly and photoswitching kinetics are explored by in situ microscopy and X-ray measurements for different mesogen end groups (NO2 or CN), and different carbon chain lengths (0C or 12C) between the siloxane and the mesogen. The presence of the 12C spacer leads to hierarchical ordering with smectic layers of mesogens existing alongside larger length-scale lamellae, versus only smectic ordering without the spacer. These hierarchically ordered BCOs display highly persistent lamellar sheets that contrast with the tortuous, low-persistence "fingerprint"-type structures seen in conventional block copolymers. The reordering kinetics upon removal of UV illumination are extremely rapid (<5 s). This fast response is due to the electron-withdrawing NO2 and CN, which facilitate cis-to-trans isomerization via thermal relaxation at room temperature without additional stimuli. This work elucidates structure-property relationships in photoswitching BCOs and advances the possibility of developing systems in which ordered nanostructures can be easily optically written and erased.

4.
Macromol Rapid Commun ; 43(19): e2200279, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35526090

RESUMO

Organic indoor photovoltaics (IPVs) are attractive energy harvesting devices for low-power consumption electronic devices and the Internet of Things (IoTs) owing to their properties such as being lightweight, semitransparent, having multicoloring capability, and flexibility. It is important to match the absorption range of photoactive materials with the emission spectra of indoor light sources that have a visible range of 400-700 nm for IPVs to provide sustainable, high-power density. To this end, benzo[1,2-b:4,5-b']dithiophene-based homopolymer (PBDTT) is synthesized as a polymer donor, which is a classical material that has a wide bandgap with a deep highest occupied molecular orbitals (HOMO) level, and a series of random copolymers by incorporating thieno[3,4-c]pyrrole-4,6,-dione (TPD) as a weak electron acceptor unit in PBDTT. The composition of the TPD unit is varied to fine tune the absorption range of the polymers; the polymer containing 70% TPD (B30T70) perfectly covers the entire range of indoor lamps such as light-emitting diodes (LEDs) and fluorescent lamp (FL). Consequently, B30T70 shows a dramatic enhancement of the power conversion efficiency (PCE) from 1-sun (PCE: 6.0%) to the indoor environment (PCE: 18.3%) when fabricating organic IPVs by blending with PC71 BM. The simple, easy molecular design guidelines are suggested to develop photoactive materials for efficient organic IPVs.

5.
Chem Rev ; 119(13): 8028-8086, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181904

RESUMO

All-polymer solar cells (all-PSCs) consisting of polymer donors (PDs) and polymer acceptors (PAs) have drawn tremendous research interest in recent years. It is due to not only their tunable optical, electrochemical, and structural properties, but also many superior features that are not readily available in conventional polymer-fullerene solar cells (fullerene-PSCs) including long-term stability, synthetic accessibility, and excellent film-forming properties suitable for large-scale manufacturing. Recent breakthroughs in material design and device engineering have driven the power conversion efficiencies (PCEs) of all-PSCs exceeding 11%, which is comparable to the performance of fullerene-PSCs. Furthermore, outstanding mechanical durability and stretchability have been reported for all-PSCs, which make them stand out from the other small molecule-based PSCs as a promising power supplier for wearable electronic devices. This review provides a comprehensive overview of the important work in all-PSCs, in which pertinent examples are deliberately chosen. First, we describe the key components that enabled the recent progresses of all-PSCs including rational design rules for efficient PDs and PAs, blend morphology control, and light harvesting engineering. We also review the recent work on the understanding of the stability of all-PSCs under various external conditions, which highlights the importance of all-PSCs for future implementation and commercialization. Finally, because all-PSCs have not yet achieved their full potential and are still undergoing rapid development, we offer our views on the current challenges and future prospects.

6.
J Environ Manage ; 246: 192-202, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176981

RESUMO

In the United States (US), one of the effects of urban sprawl is more vehicular travel. The increase in emissions from road traffic renders air quality management unsuccessful, in spite of the efforts of the US Environmental Protection Agency (EPA), operating under the Clean Air Act, which does not regulate land use. As an alternative to urban sprawl, the US-EPA has initiated smart growth strategies based on compact development. In this study, the impacts of metropolitan-level urban form, as a measure of urban compactness/sprawl, was explored with respect to air quality in terms of NOx and PM2.5 emissions on the road and NO2 and PM2.5 concentrations in US metropolitan areas. Ordinary least squares (OLS) and two-level regression models that control for metropolitan-level socioeconomic and local-level geographic covariates were established. The results showed that high land use mixing is one of the compactness/sprawl factors (i.e., low sprawl) that reduces per-person NOx and PM2.5 emissions on the road. While metropolitan-level urban form (i.e. high compactness) had a negative effect on PM2.5 concentrations, local environmental conditions, such as local ambient roads and emissions facilities, had greater impacts on NO2 and PM2.5 concentrations than the urban form. Based on the findings in this study, urban planners and decision makers need to establish policies and practices at two scales when planning urban development: (1) the reduction of emissions from road traffic by managing metropolitan-level urban form and (2) the reduction of emissions concentrations through managing local emissions sources near populated areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Estados Unidos , United States Environmental Protection Agency , Emissões de Veículos
7.
Environ Monit Assess ; 191(8): 484, 2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31280377

RESUMO

Epidemiological research requires accurate prediction of the concentrations of air pollutants. In this study, satellite-based estimates (OMI NO2), distance-weighted models (DWMs), and universal kriging (UK) are applied to land use regression (LUR) to predict annually and monthly averaged NO2 concentrations in the continental United States. In addition, to assess environmental risk, the relationship between NO2 concentrations and people potentially exposed to NO2 within urban areas is explored in 377 metropolitan statistical areas (MSAs). The results of this study show that the application of a combination of OMI NO2, UK, and DWMs to LUR yielded the highest cross-validated (CV) R2 values and the lowest root mean square error of prediction (RMSEP): 82.9% and 0.392 on a square root scale of ppb in the annual model and 70.4-83.5% and 0.408-0.518 on square root scale of ppb in the monthly models, respectively. Moreover, the model presented a spatially unbiased distribution of CV error terms. Models based on LUR provided more accurate NO2 predictions with lower RMSEP in urban areas than in rural areas. In addition, this study finds that the people living in the urban areas of MSAs, with larger populations and a higher percentage of children under 18 years of age, are likely to be exposed to higher NO2 concentrations. By contrast, people living in the urban areas of MSAs with a higher percentage of the elderly over 65 years of age are likely to be exposed to lower NO2 concentrations.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Dióxido de Nitrogênio/análise , Adolescente , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Pré-Escolar , Monitoramento Ambiental/métodos , Humanos , Análise Espacial , Estados Unidos
8.
Acc Chem Res ; 49(11): 2424-2434, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27753477

RESUMO

All-polymer solar cells (all-PSCs), consisting of conjugated polymers as both electron donor (PD) and acceptor (PA), have recently attracted great attention. Remarkable progress has been achieved during the past few years, with power conversion efficiencies (PCEs) now approaching 8%. In this Account, we first discuss the major advantages of all-PSCs over fullerene-polymer solar cells (fullerene-PSCs): (i) high light absorption and chemical tunability of PA, which affords simultaneous enhancement of both the short-circuit current density (JSC) and the open-circuit voltage (VOC), and (ii) superior long-term stability (in particular, thermal and mechanical stability) of all-PSCs due to entangled long PA chains. In the second part of this Account, we discuss the device operation mechanism of all-PSCs and recognize the major challenges that need to be addressed in optimizing the performance of all-PSCs. The major difference between all-PSCs and fullerene-PSCs originates from the molecular structures and interactions, i.e., the electron transport ability in all-PSCs is significantly affected by the packing geometry of two-dimensional PA chains relative to the electrodes (e.g., face-on or edge-on orientation), whereas spherically shaped fullerene acceptors can facilitate isotropic electron transport properties in fullerene-PSCs. Moreover, the crystalline packing structures of PD and PA at the PD-PA interface greatly affect their free charge carrier generation efficiencies. The design of PA polymers (e.g., main backbone, side chain, and molecular weight) should therefore take account of optimizing three major aspects in all-PSCs: (1) the electron transport ability of PA, (2) the molecular packing structure and orientation of PA, and (3) the blend morphology. First, control of the backbone and side-chain structures, as well as the molecular weight, is critical for generating strong intermolecular assembly of PA and its network, thus enabling high electron transport ability of PA comparable to that of fullerenes. Second, the molecular orientation of anisotropically structured PA should be favorably controlled in order to achieve efficient charge transport as well as charge transfer at the PD-PA interface. For instance, face-to-face stacking between PD and PA at the interface is desired for efficient free charge carrier generation because misoriented chains often cause an additional energy barrier for overcoming the binding energy of the charge transfer state. Third, large-scale phase separation often occurs in all-PSCs because of the significantly reduced entropic contribution by two macromolecular chains of PD and PA that energetically disfavors mixing. In this Account, we review the recent progress toward overcoming each recognized challenge and intend to provide guidelines for the future design of PA. We believe that by optimization of the parameters discussed above the PCE values of all-PSCs will surpass the 10% level in the near future and that all-PSCs are promising candidates for the successful realization of flexible and portable power generators.

9.
J Cell Biochem ; 116(4): 648-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25399916

RESUMO

Dynamin-related protein-1 (Drp1) plays a critical role in mitochondrial fission which allows cell proliferation and Mdivi-1, a specific small molecule Drp1 inhibitor, is revealed to attenuate proliferation. However, few molecular mechanisms-related to Drp1 under stimulus for restenosis or atherosclerosis have been investigated in vascular smooth muscle cells (vSMCs). Therefore, we hypothesized that Drp1 inhibition can prevent vascular restenosis and investigated its regulatory mechanism. Angiotensin II (Ang II) or hydrogen peroxide (H2 O2 )-induced proliferation and migration in SMCs were attenuated by down-regulation of Drp1 Ser 616 phosphorylation, which was demonstrated by in vitro assays for migration and proliferation. Excessive amounts of ROS production and changes in mitochondrial membrane potential were prevented by Drp1 inhibition under Ang II and H2 O2 . Under the Ang II stimulation, activated Drp1 interacted with PKCδ and then activated MEK1/2-ERK1/2 signaling cascade and MMP2, but not MMP9. Furthermore, in ex vivo aortic ring assay, inhibition of the Drp1 had significant anti-proliferative and -migration effects for vSMCs. A formation of vascular neointima in response to a rat carotid artery balloon injury was prevented by Drp1 inhibition, which shows a beneficial effect of Drp1 regulation in the pathologic vascular condition. Drp1-mediated SMC proliferation and migration can be prevented by mitochondrial division inhibitor (Mdivi-1) in in vitro, ex vivo and in vivo, and these results suggest the possibility that Drp1 can be a new therapeutic target for restenosis or atherosclerosis.


Assuntos
Reestenose Coronária/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Proteína Quinase C-delta/metabolismo , Angiotensina II/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neointima/metabolismo , Fosforilação , Ratos
10.
J Am Chem Soc ; 137(6): 2359-65, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25605316

RESUMO

The molecular weight of a conjugated polymer is one of the key factors determining the electrical, morphological, and mechanical properties as well as its solubility in organic solvents and miscibility with other polymers. In this study, a series of semicrystalline poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) polymers with different number-average molecular weights (M(n)'s) (PPDT2FBT(L), M(n) = 12 kg/mol; PPDT2FBT(M), M(n) = 24 kg/mol; PPDT2FBT(H), M(n) = 40 kg/mol) were synthesized, and their photovoltaic properties as electron donors for all-polymer solar cells (all-PSCs) with poly[[N,N'-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) acceptor were studied. The M(n) effect of PPDT2FBT on the structural, morphological, electrical, and photovoltaic properties was systematically investigated. In particular, tuning the M(n) induced dramatic effects on the aggregation behaviors of the polymers and their bulk heterojunction morphology of all-PSCs, which was thoroughly examined by grazing incident X-ray scattering, resonant soft X-ray scattering, and other microscopy measurements. High M(n) PPDT2FBT(H) promoted a strong "face-on" geometry in the blend film, suppressed the formation of an excessively large crystalline domain, and facilitated molecularly intermixed phases with P(NDI2OD-T2). Therefore, the optimized all-PSCs based on PPDT2FBT(H)/P(NDI2OD-T2) showed substantially higher hole and electron mobilities than those of PPDT2FBT(L)/P(NDI2OD-T2), leading to a power conversion efficiency exceeding 5%, which is one of the highest values for all-PSCs reported thus far.

11.
Biochem Biophys Res Commun ; 423(2): 404-10, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22664106

RESUMO

Myocardial ischemia is the major cause of morbidity and mortality due to cardiovascular diseases. This disease is a severe stress condition that causes extensive biochemical changes which trigger cardiac cell death. Stress conditions such as deprivation of glucose and oxygen activate the endoplasmic reticulum in the cytoplasm of cells, including cardiomyocytes, to generate and propagate apoptotic signals in response to these conditions. microRNAs (miRNAs) are a class of small non-coding RNAs that mediate posttranscriptional gene silencing. The miRNAs play important roles in regulating cardiac physiological and pathological events such as hypertrophy, apoptosis, and heart failure. However, the roles of miRNAs in reactive oxygen species (ROS)-mediated injury on cardiomyocytes are uncertain. In this study, we identified at the apoptotic concentration of H(2)O(2), miR-26a expression was increased. To determine the potential roles of miR-26a in H(2)O(2)-mediated cardiac apoptosis, miR-26a expression was regulated by a miR-26a or an anti-miR-26a. Overexpression of miR-26a increased apoptosis as determined by upregulation of Annexin V/PI positive cell population, caspase-3 activity and expression of pro-apoptotic signal molecules, whereas inhibition of miR-26a reduced apoptosis. We identified GSK3B as a direct downstream target of miR-26a. Furthermore, miR-26a attenuated viability and increased caspase-3 activity in normal cardiomyocytes. This study demonstrates that miR-26a promotes ROS-induced apoptosis in cardiomyocytes. Thus, miR-26a affects ROS-mediated gene regulation and cellular injury response.


Assuntos
Apoptose/genética , Regulação Enzimológica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , MicroRNAs/biossíntese , Miócitos Cardíacos/fisiologia , Animais , Hipóxia Celular , Células Cultivadas , Glicogênio Sintase Quinase 3 beta , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima
12.
ACS Appl Mater Interfaces ; 14(51): 57070-57081, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36515660

RESUMO

Organic solar cells (OSCs) based on conjugated block copolymers (CBCs) have gained considerable attention owing to their simple one-pot solution process. However, their power conversion efficiencies (PCEs) require significant improvement. Furthermore, the majority of efficient CBC-based OSCs are processed using environmentally toxic halogenated solvents. Herein, we develop a new CBC (PBDB-T-b-PY5BDT) and demonstrate efficient and stable OSCs achieved by a halogen-free solution process. We design a (D1-A1)-b-(D1-A2)-type CBC (PBDB-T-b-PY5BDT) that shares the same benzodithiophene (BDT) units in donor and acceptor blocks. This alleviates unfavorable molecular interactions between the blocks at their interfaces. The PBDB-T-b-PY5BDT-based devices exhibit a high PCE (10.55%), and they show good mechanical, thermal, and storage stabilities. Importantly, we discuss the potential of our OSCs by preparing two different control systems: one based on a binary polymer blend (PBDB-T:PY5BDT) and another based on a conjugated random copolymer (CRC, PBDB-T-r-PY5BDT). We demonstrate that the photovoltaic performance, device stability, and mechanical robustness of the CBC-based OSCs exceed those of the binary all-polymer solar cells and CRC-based OSCs.

13.
J Phys Chem Lett ; 13(34): 7994-8001, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984767

RESUMO

Molybdenum disulfide (MoS2) nanosheets exhibit anisotropic optical and electronic properties, stemming from their shape and electronic structure. Unveiling this anisotropy for study and usage in materials and devices requires the ability to control the orientation of dispersed nanosheets, but to date this has proved a challenging proposition. Here, we demonstrate magnetic field driven alignment of MoS2 nanosheets in a liquid crystal (LC) polymer and unveil the optical properties of the resulting anisotropic assembly. Nanosheet optical anisotropy is observed spectroscopically by Raman and direction-dependent photoluminescence (PL) measurements. Resulting data indicate significantly lower PL emission due to optical excitation with electric field oscillation out of plane, parallel to the MoS2 c-axis, than that associated with perpendicular excitation, with the dichroic ratio Iperp/Ipar = 3. The approach developed here provides a useful route to elucidate anisotropic optical properties of MoS2 nanosheets and to utilize such properties in new materials and devices.

14.
ACS Macro Lett ; 10(7): 945-957, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35549196

RESUMO

Liquid-crystal polymers (LCPs) integrate at a molecular level the characteristics of two important material classes, i.e., liquid crystals (LCs) and polymers. As a result, they exhibit a wide variety of intriguing physical phenomena and have useful properties in various settings. In the nearly 50 years since the discovery of the first melt-processable LCPs, there has been a remarkable expansion in the field encompassing the development of new chain architectures, the incorporation of new classes of mesogens, and the exploration of new properties and applications. As engineering materials, LCPs are historically best known in the context of high strength fibers. In a more contemporary study, the pairing of LC mesophase assembly with block copolymer (BCP) self-assembly in LC BCPs has resulted in a fascinating interplay of ordering phenomena and rich phase behavior, while lightly cross-linked networks, LC elastomers, are extensively investigated as shape memory materials based on their thermomechanical actuation. As this Viewpoint describes, these and other examples are active areas of research in which new, compelling opportunities for LCPs are emerging. We highlight a few selected areas that we view as being potentially significant in the near future, with a particular emphasis on nanopatterning. Here, the ability to readily access small feature sizes, the fluidity of the LC mesophase, and LC-based handles for achieving orientation control present a compelling combination. Opportunities for LCPs are also presented under the broad rubric of "beyond nanopatterning", and we discuss relevant challenges and potential new directions in the field.


Assuntos
Cristais Líquidos , Aniversários e Eventos Especiais , Elastômeros/química , Cristais Líquidos/química , Substâncias Macromoleculares , Polímeros/química
15.
ACS Nano ; 15(5): 8192-8203, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33729764

RESUMO

Nanostructured materials with precisely defined and water-bicontinuous 1-nm-scale pores are highly sought after as advanced materials for next-generation nanofiltration membranes. While several self-assembled systems appear to satisfy this need, straightforward fabrication of such materials as submicron films with high-fidelity retention of their ordered nanostructure represents a nontrivial challenge. We report the development of a lyotropic liquid crystal mesophase that addresses the aforementioned issue. Films as thin as ∼200 nm are prepared on conventional support membranes using solution-based methods. Within these films, the system is composed of a hexagonally ordered array of ∼3 nm diameter cylinders of cross-linked polymer, embedded in an aqueous medium. The cylinders are uniformly oriented in the plane of the film, providing a transport-limiting dimension of ∼1 nm, associated with the space between the outer surfaces of nearest-neighbor cylinders. These membranes exhibit molecular weight cutoffs of ∼300 Da for organic solutes and are effective in rejecting dissolved salts, and in particular, divalent species, while exhibiting water permeabilities that rival or exceed current state-of-the-art commercial nanofiltration membranes. These materials have the ability to address a broad range of nanofiltration applications, while structure-property considerations suggest several avenues for potential performance improvements.

16.
ACS Nano ; 14(11): 14493-14527, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33103903

RESUMO

Despite the recent breakthroughs of polymer solar cells (PSCs) exhibiting a power conversion efficiency of over 17%, toxic and hazardous organic solvents such as chloroform and chlorobenzene are still commonly used in their fabrication, which impedes the practical application of PSCs. Thus, the development of eco-friendly processing methods suitable for industrial-scale production is now considered an imperative research focus. This Review provides a roadmap for the design of efficient photoactive materials that are compatible with non-halogenated green solvents (e.g., xylenes, toluene, and tetrahydrofuran). We summarize the recent development of green processing solvents and the processing methods to match with the efficient photoactive materials used in non-fullerene solar cells. We further review progress in the use of more eco-friendly solvents (i.e., water or alcohol) for achieving truly sustainable and eco-friendly PSC fabrication. For example, the concept of water- or alcohol-dispersed nanoparticles made of conjugated materials is introduced. Also, recent important progress and strategies to develop water/alcohol-soluble photoactive materials that completely eliminate the use of conventional toxic solvents are discussed. Finally, we provide our perspectives on the challenges facing the current green processing methods and materials, such as large-area coating techniques and long-term stability. We believe this Review will inform the development of PSCs that are truly clean and renewable energy sources.

17.
ACS Appl Mater Interfaces ; 11(48): 45038-45047, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31701742

RESUMO

Aqueous-processed all-polymer solar cells (aq-APSCs) are reported for the first time by developing a series of water/ethanol-soluble naphthalenediimide (NDI)-based polymer acceptors [P(NDIDEG-T), P(NDITEG-T), and P(NDITEG-T2)]. Polymer acceptors are designed by using the backbones of NDI-bithiophene and NDI-thiophene in combination with nonionic hydrophilic oligoethylene glycol (OEG) side chains that facilitate processability in water/ethanol mixtures. All three polymers exhibit sufficient solubility (20-50 mg mL-1) in the aqueous medium. The P(NDIDEG-T) polymer with shorter OEG side chains is the most crystalline with the highest electron mobility, enabling the fabrication of efficient aq-APSCs with the maximum power conversion efficiency (PCE) of 2.15%. Furthermore, these aq-APSCs are fabricated under ambient atmosphere by taking advantage of the eco-friendly aqueous process and, importantly, the devices exhibit outstanding air-stability without any encapsulation, as evident by maintaining more than 90% of the initial PCE in the air after 4 days. According to a double cantilever beam test, the interfacial adhesion properties between the active layer and electron/hole transporting layers were remarkably improved by incorporating the hydrophilic OEG-attached photoactive layer, which hinders the delamination of the constituent layers and prevents the increase of series resistance, ultimately leading to enhanced durability under ambient conditions. The combination of increased device stability and minimal environmental impact of these aq-APSCs demonstrates them to be worthy candidates for continued development of scalable polymer solar cells.

18.
ACS Appl Mater Interfaces ; 10(16): 13748-13756, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29536724

RESUMO

The ternary-blend approach has the potential to enhance the power conversion efficiencies (PCEs) of polymer solar cells (PSCs) by providing complementary absorption and efficient charge generation. Unfortunately, most PSCs are processed with toxic halogenated solvents, which are harmful to human health and the environment. Herein, we report the addition of a nonfullerene electron acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2',3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene (ITIC) to a binary blend (poly[4,8-bis(2-(4-(2-ethylhexyloxy)3-fluorophenyl)-5-thienyl)benzo[1,2- b:4,5- b']dithiophene- alt-1,3-bis(4-octylthien-2-yl)-5-(2-ethylhexyl)thieno[3,4- c]pyrrole-4,6-dione] (P1):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), PCE = 8.07%) to produce an efficient nonhalogenated green solvent-processed ternary PSC system with a high PCE of 10.11%. The estimated wetting coefficient value (0.086) for the ternary blend suggests that ITIC could be located at the P1:PC71BM interface, resulting in efficient charge generation and charge transport. In addition, the improved current density, sustained open-circuit voltage and PCE of the optimized ternary PSCs were highly correlated with their better external quantum efficiency response and flat-band potential value obtained from the Mott-Schottky analysis. In addition, the ternary PSCs also showed excellent ambient stability over 720 h. Therefore, our results demonstrate the combination of fullerene and nonfullerene acceptors in ternary blend as an efficient approach to improve the performance of eco-friendly solvent-processed PSCs with long-term stability.

19.
ACS Appl Mater Interfaces ; 8(41): 27911-27919, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27669058

RESUMO

This paper reports the distinct roles of Au and Ag nanoparticles (NPs) in organic light-emitting diodes (OLEDs) depending on their sizes. Au and Ag NPs that are 40 and 50 nm in size, respectively, are the most effective for enhancing the performance of green OLEDs. The external quantum efficiencies (EQEs) of green OLEDs doped with Au and Ag NPs (40 and 50 nm, respectively) are improved by 29.5% and 36.1%, respectively, while the power efficiencies (PEs) are enhanced by 47.9% and 37.5%, respectively. Furthermore, combining the Au and Ag NPs produces greater enhancements. The EQE and PE of the codoped OLEDs are improved by 63.9% and 68.8%, respectively, through the synergistic behavior of the different NPs. Finite-difference time-domain simulations confirm that the localized surface-plasmon resonance of the Au NPs near 580 nm improves the radiative recombination rate (krad) of green-light emitters locally (<50 nm), while the Ag NPs cause relatively long-range and broadband enhancements in krad. The simulations of various domain sizes verify that the light-extraction efficiency (LEE) can be enhanced by more than 4.2% by applying Ag NPs. Thus, size-controlled Au and Ag NPs can synergistically enhance OLEDs by improving both the internal quantum efficiency and LEE.

20.
Adv Mater ; 28(45): 10016-10023, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717212

RESUMO

Side-chain fluorination of polymers is demonstrated as a highly effective strategy to improve the efficiency of all-polymer solar cells from 2.93% (nonfluorinated P1) to 7.13% (fluorinated P2). This significant enhancement is achieved by synergistic improvements in open-circuit voltage, charge generation, and charge transport, as fluorination of the donor polymer optimizes the band alignment and the film morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA