RESUMO
We propose and demonstrate a simple detuning method for the low-chirp operation of a polymer-based tunable external-cavity laser (ECL). To ensure the low-chirp operation of this directly-modulated ECL, we first obtain the optimum values of the heater current applied to the polymer Bragg grating reflector (PBR) and the operating temperature of this ECL. For this purpose, we sweep the current applied to the phase control heater until the peak output power measured from the high-reflection (HR) coated facet reaches the minimum value. We then operate this ECL with minimum chirp by tuning the lasing mode to the longer wavelength limit of the stable operation region. This is because the detuned loading effect is maximized at this limit as the in-phase condition between the lights reflected from the PBR and anti-reflection (AR) coated facet of the gain medium is satisfied. Thus, by using this method together with conventional wavelength-locking algorithm, we can operate this ECL with minimum chirp at any wavelength.
RESUMO
We demonstrate a directly-modulated 10-Gb/s tunable external cavity laser (ECL) fabricated by using a polymer Bragg reflector and a high-speed superluminescent diode (SLD). The tuning range and output power of this ECL are measured to be >11 nm and 2.6 mW (@ 100 mA), respectively. We directly modulate this laser at 10 Gb/s and transmit the modulated signal over 20 km of standard single-mode fiber. The power penalty is measured to be <2.8 dB at the bit-error rate (BER) of 10(-10).