Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744268

RESUMO

The field of nanoscale magnetic resonance imaging (NanoMRI) was started 30 years ago. It was motivated by the desire to image single molecules and molecular assemblies, such as proteins and virus particles, with near-atomic spatial resolution and on a length scale of 100 nm. Over the years, the NanoMRI field has also expanded to include the goal of useful high-resolution nuclear magnetic resonance (NMR) spectroscopy of molecules under ambient conditions, including samples up to the micron-scale. The realization of these goals requires the development of spin detection techniques that are many orders of magnitude more sensitive than conventional NMR and MRI, capable of detecting and controlling nanoscale ensembles of spins. Over the years, a number of different technical approaches to NanoMRI have emerged, each possessing a distinct set of capabilities for basic and applied areas of science. The goal of this roadmap article is to report the current state of the art in NanoMRI technologies, outline the areas where they are poised to have impact, identify the challenges that lie ahead, and propose methods to meet these challenges. This roadmap also shows how developments in NanoMRI techniques can lead to breakthroughs in emerging quantum science and technology applications. .

2.
N Engl J Med ; 382(20): 1926-1932, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32402162

RESUMO

We report the implantation of patient-derived midbrain dopaminergic progenitor cells, differentiated in vitro from autologous induced pluripotent stem cells (iPSCs), in a patient with idiopathic Parkinson's disease. The patient-specific progenitor cells were produced under Good Manufacturing Practice conditions and characterized as having the phenotypic properties of substantia nigra pars compacta neurons; testing in a humanized mouse model (involving peripheral-blood mononuclear cells) indicated an absence of immunogenicity to these cells. The cells were implanted into the putamen (left hemisphere followed by right hemisphere, 6 months apart) of a patient with Parkinson's disease, without the need for immunosuppression. Positron-emission tomography with the use of fluorine-18-L-dihydroxyphenylalanine suggested graft survival. Clinical measures of symptoms of Parkinson's disease after surgery stabilized or improved at 18 to 24 months after implantation. (Funded by the National Institutes of Health and others.).


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Doença de Parkinson/terapia , Parte Compacta da Substância Negra/citologia , Idoso , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Seguimentos , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Masculino , Camundongos , Camundongos SCID , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Putamen/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Transplante Autólogo , Transplante Homólogo
3.
Hum Genomics ; 16(1): 67, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482414

RESUMO

BACKGROUND: The human exposome is composed of diverse metabolites and small chemical compounds originated from endogenous and exogenous sources, respectively. Genetic and environmental factors influence metabolite levels, while the extent of genetic contributions across metabolic pathways is not yet known. Untargeted profiling of human metabolome using high-resolution mass spectrometry (HRMS) combined with genome-wide genotyping allows comprehensive identification of genetically influenced metabolites. As such previous studies of adults discovered and replicated genotype-metabotype associations. However, these associations have not been characterized in children. RESULTS: We conducted the largest genome by metabolome-wide association study to date of children (N = 441) using 619,688 common genetic variants and 14,342 features measured by HRMS. Narrow-sense heritability (h2) estimates of plasma metabolite concentrations using genomic relatedness matrix restricted maximum likelihood (GREML) method showed a bimodal distribution with high h2 (> 0.8) for 15.9% of features and low h2 (< 0.2) for most of features (62.0%). The features with high h2 were enriched for amino acid and nucleic acid metabolism, while carbohydrate and lipid concentrations showed low h2. For each feature, a metabolite quantitative trait loci (mQTL) analysis was performed to identify genetic variants that were potentially associated with plasma levels. Fifty-four associations among 29 features and 43 genetic variants were identified at a genome-wide significance threshold p < 3.5 × 10-12 (= 5 × 10-8/14,342 features). Previously reported associations such as UGT1A1 and bilirubin; PYROXD2 and methyl lysine; and ACADS and butyrylcarnitine were successfully replicated in our pediatric cohort. We found potential candidates for novel associations including CSMD1 and a monostearyl alcohol triglyceride (m/z 781.7483, retention time (RT) 89.3 s); CALN1 and Tridecanol (m/z 283.2741, RT 27.6). A gene-level enrichment analysis using MAGMA revealed highly interconnected modules for dADP biosynthesis, sterol synthesis, and long-chain fatty acid transport in the gene-feature network. CONCLUSION: Comprehensive profiling of plasma metabolome across age groups combined with genome-wide genotyping revealed a wide range of genetic influence on diverse chemical species and metabolic pathways. The developmental trajectory of a biological system is shaped by gene-environment interaction especially in early life. Therefore, continuous efforts on generating metabolomics data in diverse human tissue types across age groups are required to understand gene-environment interaction toward healthy aging trajectories.


Assuntos
Genômica , Metabolômica , Humanos , Criança
4.
Nano Lett ; 21(24): 10208-10214, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34870431

RESUMO

We demonstrate a high-quality spin-orbit torque nano-oscillator comprised of spin wave modes confined by the magnetic field by the strongly inhomogeneous dipole field of a nearby micromagnet. This approach enables variable spatial confinement and systematic tuning of magnon spectrum and spectral separations for studying the impact of multimode interactions on auto-oscillations. We find these dipole-field-localized spin wave modes exhibit good characteristic properties as auto-oscillators─narrow line width and large amplitude─while persisting up to room temperature. We find that the line width of the lowest-lying localized mode is approximately proportional to temperature in good agreement with theoretical analysis of the impact of thermal fluctuations. This demonstration of a clean oscillator with tunable properties provides a powerful tool for understanding the fundamental limitations and line width contributions to improve future spin-Hall oscillators.

5.
BMC Bioinformatics ; 22(1): 259, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016036

RESUMO

BACKGROUND: Whole exome sequencing (WES) is widely adopted in clinical and research settings; however, one of the practical concerns is the potential false negatives due to incomplete breadth and depth of coverage for several exons in clinically implicated genes. In some cases, a targeted gene panel testing may be a dependable option to ascertain true negatives for genomic variants in known disease-associated genes. We developed a web-based tool to quickly gauge whether all genes of interest would be reliably covered by WES or whether targeted gene panel testing should be considered instead to minimize false negatives in candidate genes. RESULTS: WEScover is a novel web application that provides an intuitive user interface for discovering breadth and depth of coverage across population-scale WES datasets, searching either by phenotype, by targeted gene panel(s) or by gene(s). Moreover, the application shows metrics from the Genome Aggregation Database to provide gene-centric view on breadth of coverage. CONCLUSIONS: WEScover allows users to efficiently query genes and phenotypes for the coverage of associated exons by WES and recommends use of panel tests for the genes with potential incomplete coverage by WES.


Assuntos
Exoma , Genômica , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Sequenciamento do Exoma
6.
Dev Growth Differ ; 63(3): 219-227, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33595856

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a pandemic as of early 2020. Upon infection, SARS-CoV-2 attaches to its receptor, that is, angiotensin-converting enzyme 2 (ACE2), on the surface of host cells and is then internalized into host cells via enzymatic machineries. This subsequently stimulates immune response factors. Since the host immune response and severity of COVID-19 vary among individuals, genetic risk factors for severe COVID-19 cases have been investigated. Our research group recently conducted a survey of genetic variants among SARS-CoV-2-interacting molecules across populations, noting near absence of difference in allele frequency spectrum between populations in these genes. Recent genome-wide association studies have identified genetic risk factors for severe COVID-19 cases in a segment of chromosome 3 that involves six genes encoding three immune-regulatory chemokine receptors and another three molecules. The risk haplotype seemed to be inherited from Neanderthals, suggesting genetic adaptation against pathogens in modern human evolution. Therefore, SARS-CoV-2 uses highly conserved molecules as its virion interaction, whereas its immune response appears to be genetically biased in individuals to some extent. We herein review the molecular process of SARS-CoV-2 infection as well as our further survey of genetic variants of its related immune effectors. We also discuss aspects of modern human evolution.


Assuntos
Imunidade Adaptativa , COVID-19 , Evolução Molecular , Variação Genética , Interações Hospedeiro-Patógeno , SARS-CoV-2/genética , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Animais , COVID-19/epidemiologia , COVID-19/genética , COVID-19/imunologia , Sequência Conservada , Estudo de Associação Genômica Ampla , Adaptação ao Hospedeiro/genética , Adaptação ao Hospedeiro/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pandemias , SARS-CoV-2/imunologia , Análise de Sequência de RNA
7.
Hum Mutat ; 41(2): 387-396, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31691385

RESUMO

Genome sequencing is positioned as a routine clinical work-up for diverse clinical conditions. A commonly used approach to highlight candidate variants with potential clinical implication is to search over locus- and gene-centric knowledge databases. Most web-based applications allow a federated query across diverse databases for a single variant; however, sifting through a large number of genomic variants with combination of filtering criteria is a substantial challenge. Here we describe the Clinical Genome and Ancestry Report (CGAR), an interactive web application developed to follow clinical interpretation workflows by organizing variants into seven categories: (1) reported disease-associated variants, (2) rare- and high-impact variants in putative disease-associated genes, (3) secondary findings that the American College of Medical Genetics and Genomics recommends reporting back to patients, (4) actionable pharmacogenomic variants, (5) focused reports for candidate genes, (6) de novo variant candidates for trio analysis, and (7) germline and somatic variants implicated in cancer risk, diagnosis, treatment and prognosis. For each variant, a comprehensive list of external links to variant-centric and phenotype databases are provided. Furthermore, genotype-derived ancestral composition is used to highlight allele frequencies from a matched population since some disease-associated variants show a wide variation between populations. CGAR is an open-source software and is available at https://tom.tch.harvard.edu/apps/cgar/.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma Humano , Genômica/métodos , Software , Navegador , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Variação Genética , Humanos , Anotação de Sequência Molecular , Interface Usuário-Computador
8.
Phys Rev Lett ; 124(1): 017201, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976706

RESUMO

We lay the foundation for determining the microscopic spin interactions in two-dimensional (2D) ferromagnets by combining angle-dependent ferromagnetic resonance (FMR) experiments on high quality CrI_{3} single crystals with theoretical modeling based on symmetries. We discover that the Kitaev interaction is the strongest in this material with K∼-5.2 meV, 25 times larger than the Heisenberg exchange J∼-0.2 meV, and responsible for opening the ∼5 meV gap at the Dirac points in the spin-wave dispersion. Furthermore, we find that the symmetric off-diagonal anisotropy Γ∼-67.5 µeV, though small, is crucial for opening a ∼0.3 meV gap in the magnon spectrum at the zone center and stabilizing ferromagnetism in the 2D limit. The high resolution of the FMR data further reveals a µeV-scale quadrupolar contribution to the S=3/2 magnetism. Our identification of the underlying exchange anisotropies opens paths toward 2D ferromagnets with higher T_{C} as well as magnetically frustrated quantum spin liquids based on Kitaev physics.

9.
Chemphyschem ; 21(1): 120-128, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31408568

RESUMO

Biocatalytic buckypaper electrodes modified with pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and bilirubin oxidase for glucose oxidation and oxygen reduction, respectively, were prepared for their use in a biofuel cell. A small (millimeter-scale; 2×3×2 mm3 ) enzyme-based biofuel cell was tested in a model glucose-containing aqueous solution, in human serum, and as an implanted device in a living gray garden slug (Deroceras reticulatum), producing electrical power in the range of 2-10 µW (depending on the glucose source). A microelectronic temperature-sensing device equipped with a rechargeable supercapacitor, internal data memory and wireless data downloading capability was specifically designed for activation by the biofuel cell. The power management circuit in the device allowed the optimized use of the power provided by the biofuel cell dependent on the sensor operation activity. The whole system (power-producing biofuel cell and power-consuming sensor) operated autonomously by extracting electrical energy from the available environmental source, as exemplified by extracting power from the glucose-containing hemolymph (blood substituting biofluid) in the slug to power the complete temperature sensor system and read out data wirelessly. Other sensor systems operating autonomously in remote locations based on the concept illustrated here are envisaged for monitoring different environmental conditions or can be specially designed for homeland security applications, particularly in detecting bioterrorism threats.


Assuntos
Fontes de Energia Bioelétrica , Biocombustíveis , Técnicas Biossensoriais , Animais , Gastrópodes , Glucose 1-Desidrogenase/metabolismo , Humanos , Hypocreales/enzimologia , Masculino , Microeletrodos , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Cofator PQQ/química , Cofator PQQ/metabolismo
10.
Prog Photovolt ; 27(6): 540-546, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34354330

RESUMO

Photovoltaic modules at the mm-scale are demonstrated in this work to power wirelessly interconnected mm-scale sensor systems operating under low flux conditions, enabling applications in the Internet of Things and biological sensors. Module efficiency is found to be limited by perimeter recombination for individual cells, and shunt leakage for the series-connected module configuration. We utilize GaAs and AlGaAs junction barrier isolation between interconnected cells to dramatically reduce shunt leakage current. A photovoltaic module with eight series-connected cells and total area of 1.27-mm2 demonstrates a power conversion efficiency of greater than 26 % under low-flux near infrared illumination (850 nm at 1 µW/mm2). The output voltage of the module is greater than 5 V, providing a voltage up-conversion efficiency of more than 90 %. We demonstrate direct photovoltaic charging of a 16 µAh pair of thin-film lithium-ion batteries under dim light conditions, enabling the perpetual operation of practical mm-scale wirelessly interconnected systems.

11.
Genet Med ; 20(12): 1617-1626, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29789557

RESUMO

PURPOSE: To evaluate the coverage and accuracy of whole-exome sequencing (WES) across vendors. METHODS: Blood samples from three trios underwent WES at three vendors. Relative performance of the three WES services was measured for breadth and depth of coverage. The false-negative rates (FNRs) were estimated using the segregation pattern within each trio. RESULTS: Mean depth of coverage for all genes was 189.0, 124.9, and 38.3 for the three vendor services. Fifty-five of the American College of Medical Genetics and Genomics 56 genes, but only 56 of 63 pharmacogenes, were 100% covered at 10 × in at least one of the nine individuals for all vendors; however, there was substantial interindividual variability. For the two vendors with mean depth of coverage >120 ×, analytic positive predictive values (aPPVs) exceeded 99.1% for single-nucleotide variants and homozygous indels, and sensitivities were 98.9-99.9%; however, heterozygous indels showed lower accuracy and sensitivity. Among the trios, FNRs in the offspring were 0.07-0.62% at well-covered variants concordantly called in both parents. CONCLUSION: The current standard of 120 × coverage for clinical WES may be insufficient for consistent breadth of coverage across the exome. Ordering clinicians and researchers would benefit from vendors' reports that estimate sensitivity and aPPV, including depth of coverage across the exome.


Assuntos
Sequenciamento do Exoma/métodos , Exoma/genética , Genoma Humano/genética , Feminino , Genômica , Heterozigoto , Homozigoto , Humanos , Mutação INDEL/genética , Masculino , Anotação de Sequência Molecular
12.
Proc Natl Acad Sci U S A ; 112(5): 1316-21, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605947

RESUMO

To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

13.
Nature ; 466(7308): 845-8, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20703302

RESUMO

The discovery of new phenomena in layered and nanostructured magnetic devices is driving rapid growth in nanomagnetics research. Resulting applications such as giant magnetoresistive field sensors and spin torque devices are fuelling advances in information and communications technology, magnetoelectronic sensing and biomedicine. There is an urgent need for high-resolution magnetic-imaging tools capable of characterizing these complex, often buried, nanoscale structures. Conventional ferromagnetic resonance (FMR) provides quantitative information about ferromagnetic materials and interacting multicomponent magnetic structures with spectroscopic precision and can distinguish components of complex bulk samples through their distinctive spectroscopic features. However, it lacks the sensitivity to probe nanoscale volumes and has no imaging capabilities. Here we demonstrate FMR imaging through spin-wave localization. Although the strong interactions in a ferromagnet favour the excitation of extended collective modes, we show that the intense, spatially confined magnetic field of the micromagnetic probe tip used in FMR force microscopy can be used to localize the FMR mode immediately beneath the probe. We demonstrate FMR modes localized within volumes having 200 nm lateral dimensions, and improvements of the approach may allow these dimensions to be decreased to tens of nanometres. Our study shows that this approach is capable of providing the microscopic detail required for the characterization of ferromagnets used in fields ranging from spintronics to biomagnetism. This method is applicable to buried and surface magnets, and, being a resonance technique, measures local internal fields and other magnetic properties with spectroscopic precision.

14.
IEEE Trans Electron Devices ; 63(7): 2820-2825, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28133394

RESUMO

GaAs photovoltaics are promising candidates for indoor energy harvesting to power small-scale (≈1 mm2) electronics. This application has stringent requirements on dark current, recombination, and shunt leakage paths due to low-light conditions and small device dimensions. The power conversion efficiency and the limiting mechanisms in GaAs photovoltaic cells under indoor lighting conditions are studied experimentally. Voltage is limited by generation-recombination dark current attributed to perimeter sidewall surface recombination based on the measurements of variable cell area. Bulk and perimeter recombination coefficients of 1.464 pA/mm2 and 0.2816 pA/mm, respectively, were extracted from dark current measurements. Resulting power conversion efficiency is strongly dependent on cell area, where current GaAs of 1-mm2 indoor photovoltaic cells demonstrates power conversion efficiency of approximately 19% at 580 lx of white LED illumination. Reductions in both bulk and perimeter sidewall recombination are required to increase maximum efficiency (while maintaining small cell area near 1 mm2) to approach the theoretical power conversion efficiency of 40% for GaAs cells under typical indoor lighting conditions.

15.
IEEE J Solid-State Circuits ; 51(3): 697-711, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27546899

RESUMO

This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd - |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 µm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

16.
Genet Med ; 17(7): 536-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25341114

RESUMO

PURPOSE: Disease-causing mutations and pharmacogenomic variants are of primary interest for clinical whole-genome sequencing. However, estimating genetic liability for common complex diseases using established risk alleles might one day prove clinically useful. METHODS: We compared polygenic scoring methods using a case-control data set with independently discovered risk alleles in the MedSeq Project. For eight traits of clinical relevance in both the primary-care and cardiomyopathy study cohorts, we estimated multiplicative polygenic risk scores using 161 published risk alleles and then normalized them using the population median estimated from the 1000 Genomes Project. RESULTS: Our polygenic score approach identified the overrepresentation of independently discovered risk alleles in cases as compared with controls using a large-scale genome-wide association study data set. In addition to normalized multiplicative polygenic risk scores and rank in a population, the disease prevalence and proportion of heritability explained by known common risk variants provide important context in the interpretation of modern multilocus disease risk models. CONCLUSION: Our approach in the MedSeq Project demonstrates how complex trait risk variants from an individual genome can be summarized and reported for the general clinician and also highlights the need for definitive clinical studies to obtain reference data for such estimates and to establish clinical utility.


Assuntos
Testes Genéticos/métodos , Genoma Humano , Herança Multifatorial/genética , Alelos , Cardiomiopatias/genética , Estudos de Casos e Controles , Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Reprodutibilidade dos Testes
17.
Liver Int ; 35(12): 2537-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26148225

RESUMO

BACKGROUND & AIMS: The I148M variant because of the substitution of C to G in PNPLA3 (rs738409) is associated with the increased risk of nonalcoholic fatty liver disease (NAFLD). In liver, I148M variant reduces hydrolytic function of PNPLA3, which results in hepatic steatosis; however, its association with the other clinical phenotype such as adiposity and metabolic diseases is not well established. METHODS: To identify the impact of I148M variant on clinical risk factors of NAFLD, we recruited 1363 generally healthy Korean males after excluding alcoholic and secondary causes of hepatic steatosis. Central adiposity was assessed by computed tomography, and hepatic steatosis was evaluated by abdominal ultrasonography. RESULTS: The participants were predominantly middle-aged (49.0 ± 7.1 years; range 30-60 years), and the frequency of NAFLD was 44.2%. The rs738409-G allele carriers had a 1.19-fold increased risk for NAFLD (minor allele frequency 0.43; allelic odds ratio 1.38; P = 4.3 × 10(-5) ). Interestingly, the rs738409 GG carriers showed significantly lower levels of visceral and subcutaneous adiposity (P < 0.001 and = 0.015, respectively), BMI (P < 0.001), triglycerides (P < 0.001) and insulin resistance (P = 0.002) compared to CC carriers. These negative associations between clinical risk factors and rs738409-G dosage were more prominent in non-NAFLD group compared to those in NAFLD group. CONCLUSIONS: The I148M variant, although increasing the risk of NAFLD, was associated with reduced levels of central adiposity, BMI, serum triglycerides and insulin resistance, suggesting differential roles in fat storage and distribution according to cell types and metabolic status.


Assuntos
Lipase/genética , Fígado , Proteínas de Membrana/genética , Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Obesidade Abdominal , Adulto , Índice de Massa Corporal , Predisposição Genética para Doença , Humanos , Resistência à Insulina/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade Abdominal/diagnóstico , Obesidade Abdominal/genética , Polimorfismo de Nucleotídeo Único , República da Coreia , Triglicerídeos/sangue
18.
Clin Rehabil ; 29(8): 795-802, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25352616

RESUMO

OBJECTIVE: To compare the effects of manual stretching and postural control intervention in infants with congenital muscular torticollis and to investigate the factors that predict treatment duration. DESIGN: Randomized, controlled trial. SETTING: An outpatient rehabilitation clinic in a tertiary university hospital. SUBJECTS: Infants <6 months of age with congenital muscular torticollis. INTERVENTION: Group 1 included 38 infants who received postural control intervention. Group 2 included 38 infants who received manual stretching. MAIN MEASURES: The thickness of the sternocleidomastoid tumor, rear head and facial asymmetry, and head tilt were variables measured before and after treatment. Additionally, the treatment duration was measured. RESULTS: The mean treatment duration was 92.53 ± 34.38 days for group 1 and 88.21 ± 37.23 days for group 2. The mean change of thickness of the sternocleidomastoid tumor was 6.88 ± 1.90 mm for group 1 and 6.05 ± 2.85 mm for group 2. There were no statistically significant differences in the mean treatment duration and the mean change of thickness of the sternocleidomastoid tumor between the groups (P > 0.05). The first treatment day after birth was associated with the treatment duration. In addition, facial asymmetry, the first treatment day, tumor thickness, and head tilt were associated with the treatment duration (P < 0.05). This regression model had a 57.4% explanatory power. CONCLUSIONS: There was no difference between these treatments regarding the treatment duration and the change of thickness of the sternocleidomastoid tumor. Infants with congenital muscular torticollis who were treated earlier had a shorter treatment length.


Assuntos
Terapia por Exercício/métodos , Postura , Torcicolo/congênito , Assimetria Facial/complicações , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Músculos do Pescoço/patologia , Amplitude de Movimento Articular , Torcicolo/complicações , Torcicolo/fisiopatologia , Torcicolo/reabilitação , Resultado do Tratamento
19.
Clin Rehabil ; 29(3): 269-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25027443

RESUMO

OBJECTIVE: To compare the effectiveness of high-speed treadmill training and progressive treadmill training for stroke patients. DESIGN: A double-blind, randomized controlled trial. SETTING: Inpatient rehabilitation hospital. PARTICIPANTS: A total of 61 ambulatory stroke patients. INTERVENTIONS: Patients in both groups underwent treadmill training for 30 minutes with conventional intervention. The progressive training group (n = 31) was trained to walk on a treadmill with a stepwise increase of speed over the treatment period. The high-speed training group (n = 30) trained to begin at 1.2-1.3 m/s, which is faster than the mean speed of stroke patients. All participants underwent 20 training sessions for five weeks. MAIN MEASURES: Timed up-and-go test, 10-m walk test, 6-minute walk test, and both step lengths and cadence. RESULTS: There were significant improvements in the results of the timed up-and-go test (-1.96 vs. -5.02 seconds), 10-m walk test (0.30 vs. 0.47 m/s), 6-minute walk test (38.35 vs. 64.40 m), and in the step length of the affected side (0.14 vs. 0.19 m) and the unaffected side (0.10 vs. 0.12 m) in the high-speed training group compared with those in the progressive training group (p < 0.05). Step width was not changed in either group (p > 0.05). CONCLUSION: These results suggest that high-speed training is an effective method for improving the walking ability of stroke patients.


Assuntos
Terapia por Exercício/métodos , Transtornos Neurológicos da Marcha/reabilitação , Reabilitação do Acidente Vascular Cerebral , Caminhada/educação , Aceleração , Idoso , Método Duplo-Cego , Terapia por Exercício/instrumentação , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Pacientes Internados , Masculino , Pessoa de Meia-Idade , Centros de Reabilitação , República da Coreia , Acidente Vascular Cerebral/complicações , Caminhada/fisiologia , Caminhada/psicologia
20.
J Phys Ther Sci ; 27(7): 2299-301, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26311970

RESUMO

[Purpose] In patients with cerebral palsy (CP), performance of the sit-to-stand (STS) task is influenced by an asymmetrical motor pattern. The purpose of this study was to analyze the effects of an elevated chair on STS performance in patients with CP. [Subjects and Methods] Nine CP patients performed STS from a height-adjustable instrumented chair at their natural speed, with the ankle at a 90° angle to the floor. The center-of-pressure (COP) displacement was recorded under the feet. Each foot position was tested at two chair heights corresponding to 100% and 120% of the leg length. The extent and speed of COP were calculated. [Results] The anteroposterior speed and extent of COP were greater with the standard chair than with the elevated chair. The other parameters such as mediolateral speed, extent, and vertical speed of the COP were not different between the two chairs. [Conclusion] These findings suggest that the sway with STS performed from the elevated chair was lesser than that with STS performed from the standard chair. This information will be relevant to clinicians involved in the rehabilitation of CP patients and will help identify factors that influence STS performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA