Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7962): 687-695, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37225881

RESUMO

Lead halide perovskites are promising semiconducting materials for solar energy harvesting. However, the presence of heavy-metal lead ions is problematic when considering potential harmful leakage into the environment from broken cells and also from a public acceptance point of view. Moreover, strict legislation on the use of lead around the world has driven innovation in the development of strategies for recycling end-of-life products by means of environmentally friendly and cost-effective routes. Lead immobilization is a strategy to transform water-soluble lead ions into insoluble, nonbioavailable and nontransportable forms over large pH and temperature ranges and to suppress lead leakage if the devices are damaged. An ideal methodology should ensure sufficient lead-chelating capability without substantially influencing the device performance, production cost and recycling. Here we analyse chemical approaches to immobilize Pb2+ from perovskite solar cells, such as grain isolation, lead complexation, structure integration and adsorption of leaked lead, based on their feasibility to suppress lead leakage to a minimal level. We highlight the need for a standard lead-leakage test and related mathematical model to be established for the reliable evaluation of the potential environmental risk of perovskite optoelectronics.

2.
Nature ; 605(7909): 268-273, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35292753

RESUMO

Optoelectronic devices consist of heterointerfaces formed between dissimilar semiconducting materials. The relative energy-level alignment between contacting semiconductors determinately affects the heterointerface charge injection and extraction dynamics. For perovskite solar cells (PSCs), the heterointerface between the top perovskite surface and a charge-transporting material is often treated for defect passivation1-4 to improve the PSC stability and performance. However, such surface treatments can also affect the heterointerface energetics1. Here we show that surface treatments may induce a negative work function shift (that is, more n-type), which activates halide migration to aggravate PSC instability. Therefore, despite the beneficial effects of surface passivation, this detrimental side effect limits the maximum stability improvement attainable for PSCs treated in this way. This trade-off between the beneficial and detrimental effects should guide further work on improving PSC stability via surface treatments.

3.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619226

RESUMO

Halide perovskite-based resistive switching memory (memristor) has potential in an artificial synapse. However, an abrupt switch behavior observed for a formamidinium lead triiodide (FAPbI3)-based memristor is undesirable for an artificial synapse. Here, we report on the δ-FAPbI3/atomic-layer-deposited (ALD)-SnO2 bilayer memristor for gradual analogue resistive switching. In comparison to a single-layer δ-FAPbI3 memristor, the heterojunction δ-FAPbI3/ALD-SnO2 bilayer effectively reduces the current level in the high-resistance state. The analog resistive switching characteristics of δ-FAPbI3/ALD-SnO2 demonstrate exceptional linearity and potentiation/depression performance, resembling an artificial synapse for neuromorphic computing. The nonlinearity of long-term potentiation and long-term depression is notably decreased from 12.26 to 0.60 and from -8.79 to -3.47, respectively. Moreover, the δ-FAPbI3/ALD-SnO2 bilayer achieves a recognition rate of ≤94.04% based on the modified National Institute of Standards and Technology database (MNIST), establishing its potential in an efficient artificial synapse.

4.
Nanotechnology ; 35(13)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38100835

RESUMO

The importance of light management for perovskite solar cells (PSCs) has recently been emphasized because their power conversion efficiency approaches their theoretical thermodynamic limits. Among optical strategies, anti-reflection (AR) coating is the most widely used method to reduce reflectance loss and thus increase light-harvesting efficiency. Monolayer MgF2is a well-known AR material because of its optimal refractive index, simple fabrication process, and physical and chemical durabilities. Nevertheless, quantitative estimates of the improvement achieved by the MgF2AR layer are lacking. In this study, we conducted theoretical and experimental evaluations to assess the AR effect of MgF2on the performance of formamidinium lead-triiodide PSCs. A sinusoidal tendency to enhance the short-circuit current density (JSC) was observed depending on the thickness, which was attributed to the interference of the incident light. A transfer matrix method-based simulation was conducted to calculate the optical losses, demonstrating the critical impact of reflectance loss on theJSCimprovement. The predictedJSCs values, depending on the perovskite thickness and the incident angle, are also presented. The combined use of experimental and theoretical approaches offers notable advantages, including accurate interpretation of photocurrent generation, detailed optical analysis of the experimental results, and device performance predictions under unexplored conditions.

5.
Nat Mater ; 21(12): 1396-1402, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36396958

RESUMO

Cations with suitable sizes to occupy an interstitial site of perovskite crystals have been widely used to inhibit ion migration and promote the performance and stability of perovskite optoelectronics. However, such interstitial doping inevitably leads to lattice microstrain that impairs the long-range ordering and stability of the crystals, causing a sacrificial trade-off. Here, we unravel the evident influence of the valence states of the interstitial cations on their efficacy to suppress the ion migration. Incorporation of a trivalent neodymium cation (Nd3+) effectively mitigates the ion migration in the perovskite lattice with a reduced dosage (0.08%) compared to a widely used monovalent cation dopant (Na+, 0.45%). The photovoltaic performances and operational stability of the prototypical perovskite solar cells are enhanced with a trace amount of Nd3+ doping while minimizing the sacrificial trade-off.

6.
Sensors (Basel) ; 23(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430628

RESUMO

The implementation of an energy storage system (ESS) as a container-type package is common due to its ease of installation, management, and safety. The control of the operating environment of an ESS mainly considers the temperature rise due to the heat generated through the battery operation. However, the relative humidity of the container often increases by over 75% in many cases because of the operation of the air conditioner which pursues temperature-first control. Humidity is a major factor which can cause safety issues such as fires owing to insulation breakdown caused by condensation. However, the importance of humidity control in ESS is underestimated compared to temperature control. In this study, temperature and humidity monitoring and management issues were addressed for a container-type ESS by building sensor-based monitoring and control systems. Furthermore, a rule-based air conditioner control algorithm was proposed for temperature and humidity management. A case study was conducted to compare the conventional and proposed control algorithms and verify the feasibility of the proposed algorithm. The results showed that the proposed algorithm reduced the average humidity by 11.4% compared to the value achieved with the existing temperature control method while also maintaining the temperature.

7.
Biochem Biophys Res Commun ; 637: 210-217, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36403485

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder caused by C-terminally truncated lamin A, termed as the pre-progerin product. Progerin is a C-terminally farnesylated protein derived from pre-progerin, which causes nuclear deformation at the inner-nuclear membrane. As an alternative or additional mechanism, a farnesylation-independent abnormal interaction between the C-terminus of progerin and Ig-like domain has been proposed. However, the molecular mechanism underlying the role of unfarnesylated C-terminus of pre-progerin in HGPS remains largely unknown. In this study, we determined the crystal structures of C-terminal peptide of progerin and Ig-like domain of lamin A/C. Results showed that the C-terminal cysteine residue of progerin forms a disulfide bond with the only cysteine residue of the Ig-like domain. This finding suggested that unfarnesylated progerin can form a disulfide bond with the Ig-like domain in the lamin meshwork. The Alphafold2-assisted docking structure showed that disulfide bond formation was promoted by a weak interaction between the groove of Ig-like domain and the unfarnesylated C-terminal tail region of progerin. Our results provide molecular insights into the normal aging process as well as premature aging of humans.


Assuntos
Senilidade Prematura , Lamina Tipo A , Progéria , Humanos , Senilidade Prematura/genética , Cisteína , Dissulfetos , Domínios de Imunoglobulina , Lamina Tipo A/química , Progéria/genética
8.
Chem Rev ; 120(15): 7867-7918, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786671

RESUMO

With rapid progress in a power conversion efficiency (PCE) to reach 25%, metal halide perovskite-based solar cells became a game-changer in a photovoltaic performance race. Triggered by the development of the solid-state perovskite solar cell in 2012, intense follow-up research works on structure design, materials chemistry, process engineering, and device physics have contributed to the revolutionary evolution of the solid-state perovskite solar cell to be a strong candidate for a next-generation solar energy harvester. The high efficiency in combination with the low cost of materials and processes are the selling points of this cell over commercial silicon or other organic and inorganic solar cells. The characteristic features of perovskite materials may enable further advancement of the PCE beyond those afforded by the silicon solar cells, toward the Shockley-Queisser limit. This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovskite solar cells. Furthermore, possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.

9.
Nucleic Acids Res ; 48(D1): D882-D889, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31713622

RESUMO

The Encyclopedia of DNA Elements (ENCODE) is an ongoing collaborative research project aimed at identifying all the functional elements in the human and mouse genomes. Data generated by the ENCODE consortium are freely accessible at the ENCODE portal (https://www.encodeproject.org/), which is developed and maintained by the ENCODE Data Coordinating Center (DCC). Since the initial portal release in 2013, the ENCODE DCC has updated the portal to make ENCODE data more findable, accessible, interoperable and reusable. Here, we report on recent updates, including new ENCODE data and assays, ENCODE uniform data processing pipelines, new visualization tools, a dataset cart feature, unrestricted public access to ENCODE data on the cloud (Amazon Web Services open data registry, https://registry.opendata.aws/encode-project/) and more comprehensive tutorials and documentation.


Assuntos
DNA/genética , Bases de Dados Genéticas , Genoma Humano , Software , Animais , Genômica , Humanos , Camundongos
10.
J Am Chem Soc ; 143(18): 6781-6786, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33915050

RESUMO

Postfabrication surface treatment strategies have been instrumental to the stability and performance improvements of halide perovskite photovoltaics in recent years. However, a consensus understanding of the complex reconstruction processes occurring at the surface is still lacking. Here, we combined complementary surface-sensitive and depth-resolved techniques to investigate the mechanistic reconstruction of the perovskite surface at the microscale level. We observed a reconstruction toward a more PbI2-rich top surface induced by the commonly used solvent isopropyl alcohol (IPA). We discuss several implications of this reconstruction on the surface thermodynamics and energetics. Particularly, our observations suggest that IPA assists in the adsorption process of organic ammonium salts to the surface to enhance their defect passivation effects.

11.
Biochem Biophys Res Commun ; 550: 191-196, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33706103

RESUMO

Lamins are nuclear intermediate filament proteins that play an essential role in maintaining the nuclear structure by forming a 3-D meshwork. Lamins consist of the N-terminal unstructured head, the coiled-coil rod domain, and the C-terminal tail, which is mostly unstructured except for the Ig-like domain. To date, the Ig-like domain has been characterized as a monomeric structure. Here, we determined the crystal structures of human lamin A/C, including the Ig-like domain and its N- and C-terminal flanking sequences. Interestingly, the structures showed a homodimer formed by beta-strand interactions between the N- and C-terminal flanking sequences. This interaction also provides a molecular implication for the creation of a 3-D meshwork between the 3.5-nm-thick filaments. Furthermore, we determined the crystal structure of the corresponding region of lamin B1. The structure showed a similar dimeric assembly, also formed by beta-strand interactions, albeit the intersubunit distance was much shorter. Since the Ig-like domain contains many genetic hotspots causing lamin-related diseases in lamin A/C, our findings will help understand the detailed assembly of lamins in a 3-D meshwork structure and lamin-related diseases at the molecular level.


Assuntos
Domínios de Imunoglobulina , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Lamina Tipo B/química , Lamina Tipo B/metabolismo , Multimerização Proteica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estabilidade Proteica
12.
Sensors (Basel) ; 21(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770398

RESUMO

Multi-channel Impact-echo (IE) testing was used to evaluate debonding defects at the interface between track concrete layer, TCL, and hydraulically stabilized base course, HSB, in a real scale mockup model of concrete slab tracks for Korea high-speed railway (KHSR) system. The mockup model includes three debonding defects that were fabricated by inserting three 400 mm by 400 mm (length and width) thin plastic foam boards with three different thicknesses of 5 mm, 10 mm, and 15 mm, before casting concrete in TCL. Multi-channel IE signals obtained over solid concrete and debonding defects were reduced to three critical IE testing parameters (the velocity of concrete, peak frequency, and Q factor). Bilinear classification models were used to evaluate the individual and a combination of the characteristic parameters. It was demonstrated that the best evaluation performance was obtained by using average peak frequency or the combination of average peak frequency and average Q factor, obtained by eight accelerometers in the multi-channel IE device. The results and discussion in this study would improve the understanding of characteristics of multiple IE testing parameters in concrete slab tracks and provide a fundamental basis to develop an effective prediction model of non-destructive evaluation for debonding defects at the interface between TCL and HSB in concrete slab tracks.

13.
J Sci Food Agric ; 101(2): 673-683, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32696494

RESUMO

BACKGROUND: Figs are highly perishable after harvest, and their storability and marketability are relatively short. This study aimed to determine the effects of fruit maturity on the physiological quality and targeted metabolites of 'Masui Dauphine' figs in two maturation stages (75% versus 100% commercial maturity) during cold storage. RESULTS: Fruit size and weight decreased during cold storage. Fruit respiration rate and color variables were lower at 100% maturity than at 75% maturity. Contents of soluble carbohydrates and organic acids differed according to fruit maturity. The levels of most free amino acids were decreased during cold storage; however, the levels of glutamine, serine and alanine were elevated in 100% mature fruits at the end of cold storage. The results of multivariate analyses indicated that the physiological properties of fruit and responses of targeted metabolites differed depending on fruit maturity during cold storage. CONCLUSIONS: The results suggested that fruit maturity plays a key role in controlling fruit quality of figs during cold storage. In practice, fruit maturity should be highly considered for the fresh fig market. © 2020 Society of Chemical Industry.


Assuntos
Ficus/crescimento & desenvolvimento , Frutas/química , Ácidos/química , Ácidos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Carboidratos/química , Temperatura Baixa , Ficus/química , Ficus/metabolismo , Armazenamento de Alimentos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo
14.
J Am Chem Soc ; 142(47): 20071-20079, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196182

RESUMO

Defect passivation constitutes one of the most commonly used strategies to fabricate highly efficient perovskite solar cells (PSCs). However, the durability of the passivation effects under harsh operational conditions has not been extensively studied regardless of the weak and vulnerable secondary bonding between the molecular passivation agents and perovskite crystals. Here, we incorporated strategically designed passivating agents to investigate the effect of their interaction energies on the perovskite crystals and correlated these with the performance and longevity of the passivation effects. We unraveled that the passivation agents with a stronger interaction energy are advantageous not only for effective defect passivation but also to suppress defect migration. The prototypical PSCs treated with the optimal passivation agent exhibited superior performance and operational stability, retaining 81.9 and 85.3% of their initial performance under continuous illumination or nitrogen at 85 °C after 1008 h, respectively, while the reference device completely degraded during that time. This work provides important insights into designing operationally durable defect passivation agents for perovskite optoelectronic devices.

15.
Sensors (Basel) ; 20(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322443

RESUMO

The main objectives of this research are to evaluate the effects of delamination defects on the measurement of electrical resistivity of reinforced concrete slabs through analytical and experimental studies in the laboratory, and to propose a practical guide for electrical resistivity measurements on concrete with delamination defects. First, a 3D finite element model was developed to simulate the variation of electric potential field in concrete over delamination defects with various depths and lateral sizes. Second, for experimental studies, two reinforced concrete slab specimens (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) with artificial delamination defects of various dimensions and depths were fabricated. Third, the electrical resistivity of concrete over delamination defects in the numerical simulation models and the two concrete slab specimens were evaluated by using a 4-point Wenner probe in accordance with AASHTO (American Association of State Highway and Transportation Office) T-358. It was demonstrated from analytical and experimental studies in this study that shallow (50 mm depth) and deep (250 mm depth) delamination defects resulted in higher and lower electrical resistivity (ER) values, respectively, as compared to measurements performed on solid concrete locations. Furthermore, the increase in size of shallow defects resulted in an increase in concrete resistivity, whereas the increase in sizes of deep delamination defects yielded opposite results. In addition, measurements done directly above the steel reinforcements significantly lowered ER values. Lastly, it was observed from experimental studies that the effect of delamination defects on the values of electrical resistivity decreases as the saturation level of concrete increases.

16.
Nano Lett ; 19(4): 2223-2230, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30517789

RESUMO

Single-walled carbon nanotubes (CNTs) has been considered as a promising material for a top electrode of perovskite solar cells owing to its hydrophobic nature, earth-abundance, and mechanical robustness. However, its poor conductivity, a shallow work function, and nonreflective nature have limited further enhancement in power conversion efficiency (PCE) of top CNT electrode-based perovskite solar cells. Here, we introduced a simple and scalable method to address these issues by utilizing an ex-situ vapor-assisted doping method. Trifluoromethanesulfonic acid (TFMS) vapor doping of the free-standing CNT sheet enabled tuning of conductivity and work function of the CNT electrode without damaging underneath layers. The sheet resistance of the CNT sheet was decreased by 21.3% with an increase in work function from 4.75 to 4.96 eV upon doping of TFMS. In addition, recently developed 2D perovskite-protected Cs-containing formamidium lead iodide (FACsPbI3) technology was employed to maximize the absorption. Because of the lowered resistance, better energy alignment, and improved absorption, the CNT electrode-based PSCs produced a PCE of 17.6% with a JSC of 24.21 mA/cm2, VOC of 1.005 V, and FF of 0.72. Furthermore, the resulting TFMS-doped CNT-PSCs demonstrated higher thermal and operational stability than bare CNT and metal electrode-based devices.

17.
J Sci Food Agric ; 100(14): 5117-5125, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32297316

RESUMO

BACKGROUND: The size of 'Wonhwang' Asian pear fruit may affect fruit quality and physiological disorders differentially during distribution. Thus, this study aimed to evaluate the effect of fruit size on fruit physiological attributes and metabolic responses in terms of soluble carbohydrates and free amino acids in different-sized 'Wonhwang' Asian pears during cold storage and shelf life. RESULTS: The rate of weight loss and the severity of fruit shriveling were higher in small fruit than in large fruit, while the severity of decay was lower during shelf life. Lightness and chroma values were lower in the cortex and core tissues of large fruit than small fruit, but hue angle values were higher in large fruit compared to small fruit. Glucose and fructose were higher in large fruit than in small fruit but sucrose and sorbitol were lower during shelf life after cold storage. The levels of most free amino acids were higher in large fruit than in small fruit, and only γ-aminobutyric acid (GABA) level was lower in large fruit. CONCLUSION: These results indicate that fruit physiological and metabolic responses are differentially affected by fruit size during cold storage and shelf life. © 2020 Society of Chemical Industry.


Assuntos
Pyrus/química , Aminoácidos/química , Carboidratos/química , Temperatura Baixa , Armazenamento de Alimentos , Frutas/química , Controle de Qualidade
18.
Asian-Australas J Anim Sci ; 33(12): 1896-1904, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32299162

RESUMO

OBJECTIVE: Estimating the genetic diversity and structures, both within and among chicken breeds, is critical for the identification and conservation of valuable genetic resources. In chickens, microsatellite (MS) marker polymorphisms have previously been widely used to evaluate these distinctions. Our objective was to analyze the genetic diversity and relationships among 22 chicken breeds in Asia based on allelic frequencies. METHODS: We used 469 genomic DNA samples from 22 chicken breeds from eight Asian countries (South Korea, KNG, KNB, KNR, KNW, KNY, KNO; Laos, LYO, LCH, LBB, LOU; Indonesia, INK, INS, ING; Vietnam, VTN, VNH; Mongolia, MGN; Kyrgyzstan, KGPS; Nepal, NPS; Sri Lanka, SBC) and three imported breeds (RIR, Rhode Island Red; WLG, White Leghorn; CON, Cornish). Their genetic diversity and phylogenetic relationships were analyzed using 20 MS markers. RESULTS: In total, 193 alleles were observed across all 20 MS markers, and the number of alleles ranged from 3 (MCW0103) to 20 (LEI0192) with a mean of 9.7 overall. The NPS breed had the highest expected heterozygosity (Hexp, 0.718±0.027) and polymorphism information content (PIC, 0.663±0.030). Additionally, the observed heterozygosity (Hobs) was highest in LCH (0.690±0.039), whereas WLG showed the lowest Hexp (0.372±0.055), Hobs (0.384±0.019), and PIC (0.325±0.049). Nei's DA genetic distance was the closest between VTN and VNH (0.086), and farthest between KNG and MGN (0.503). Principal coordinate analysis showed similar results to the phylogenetic analysis, and three axes explained 56.2% of the variance (axis 1, 19.17%; 2, 18.92%; 3, 18.11%). STRUCTURE analysis revealed that the 22 chicken breeds should be divided into 20 clusters, based on the highest ΔK value (46.92). CONCLUSION: This study provides a basis for future genetic variation studies and the development of conservation strategies for 22 chicken breeds in Asia.

19.
J Am Chem Soc ; 141(42): 16553-16558, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31529952

RESUMO

High efficiency perovskite solar cells have underpinned the rapid growth of the field. However, their low device stability limits further advancement. Hygroscopic lithium bis(trifluoromethanesulfonyl)imide (Li+TFSI-) and metal electrode are the main causes of the device instability. In this work, the redox reaction between lithium-ion endohedral fullerenes and 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobi-fluorene (spiro-MeOTAD) was controlled to optimize the amount of oxidized spiro-MeOTAD and antioxidizing neutral endohedral fullerenes. Application of this mixture to metal-free carbon nanotube (CNT)-laminated perovskite solar cells resulted in 17.2% efficiency with a stability time of more than 1100 h under severe conditions (temperature = 60 °C, humidity = 70%). Such high performance is attributed to the uninhibited charge flow, no metal-ion migration, and the enhanced antioxidizing activity of the devices.

20.
J Am Chem Soc ; 141(35): 13948-13953, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31403287

RESUMO

Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 µm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA