Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Chem Biol ; 19(8): 972-980, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36894722

RESUMO

Although several high-fidelity SpCas9 variants have been reported, it has been observed that this increased specificity is associated with reduced on-target activity, limiting the applications of the high-fidelity variants when efficient genome editing is required. Here, we developed an improved version of Sniper-Cas9, Sniper2L, which represents an exception to this trade-off trend as it showed higher specificity with retained high activity. We evaluated Sniper2L activities at a large number of target sequences and developed DeepSniper, a deep learning model that can predict the activity of Sniper2L. We also confirmed that Sniper2L can induce highly efficient and specific editing at a large number of target sequences when it is delivered as a ribonucleoprotein complex. Mechanically, the high specificity of Sniper2L originates from its superior ability to avoid unwinding a target DNA containing even a single mismatch. We envision that Sniper2L will be useful when efficient and specific genome editing is required.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , DNA/genética
2.
Stem Cells ; 32(2): 424-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170349

RESUMO

The pluripotency of embryonic stem cells (ESCs) is maintained by intracellular networks of many pluripotency-associated (PA) proteins such as OCT4, SOX2, and NANOG. However, the mechanisms underlying the regulation of protein homeostasis for pluripotency remain elusive. Here, we first demonstrate that autophagy acts together with the ubiquitin-proteasome system (UPS) to modulate the levels of PA proteins in human ESCs (hESCs). Autophagy inhibition impaired the pluripotency despite increment of PA proteins in hESCs. Immunogold-electron microscopy confirmed localization of OCT4 molecules within autophagosomes. Also, knockdown of LC3 expression led to accumulation of PA proteins and reduction of pluripotency in hESCs. Interestingly, autophagy and the UPS showed differential kinetics in the degradation of PA proteins. Autophagy inhibition caused enhanced accumulation of both cytoplasmic and nuclear PA proteins, whereas the UPS inhibition led to preferentially degrade nuclear PA proteins. Our findings suggest that autophagy modulates homeostasis of PA proteins, providing a new insight in the regulation of pluripotency in hESCs.


Assuntos
Autofagia/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Linhagem Celular , Proteínas de Homeodomínio/metabolismo , Homeostase , Humanos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Ubiquitina/genética
3.
Nat Commun ; 14(1): 5341, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660160

RESUMO

Ascl1 and Ngn2, closely related proneural transcription factors, are able to convert mouse embryonic stem cells into induced neurons. Despite their similarities, these factors elicit only partially overlapping transcriptional programs, and it remains unknown whether cells are converted via distinct mechanisms. Here we show that Ascl1 and Ngn2 induce mutually exclusive side populations by binding and activating distinct lineage drivers. Furthermore, Ascl1 rapidly dismantles the pluripotency network and installs neuronal and trophoblast cell fates, while Ngn2 generates a neural stem cell-like intermediate supported by incomplete shutdown of the pluripotency network. Using CRISPR-Cas9 knockout screening, we find that Ascl1 relies more on factors regulating pluripotency and the cell cycle, such as Tcf7l1. In the absence of Tcf7l1, Ascl1 still represses core pluripotency genes but fails to exit the cell cycle. However, overexpression of Cdkn1c induces cell cycle exit and restores the generation of neurons. These findings highlight that cell type conversion can occur through two distinct mechanistic paths, even when induced by closely related transcription factors.


Assuntos
Células-Tronco Embrionárias Murinas , Células-Tronco Neurais , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclo Celular/genética , Neurônios , Fatores de Transcrição
4.
Stem Cell Reports ; 16(8): 1985-1998, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242618

RESUMO

Costello syndrome (CS) is an autosomal dominant disorder caused by mutations in HRAS. Although CS patients have skeletal abnormalities, the role of mutated HRAS in bone development remains unclear. Here, we use CS induced pluripotent stem cells (iPSCs) undergoing osteogenic differentiation to investigate how dysregulation of extracellular matrix (ECM) remodeling proteins contributes to impaired osteogenesis. Although CS patient-derived iPSCs develop normally to produce mesenchymal stem cells (MSCs), the resulting CS MSCs show defective osteogenesis with reduced alkaline phosphatase activity and lower levels of bone mineralization. We found that hyperactivation of SMAD3 signaling during the osteogenic differentiation of CS MSCs leads to aberrant expression of ECM remodeling proteins such as MMP13, TIMP1, and TIMP2. CS MSCs undergoing osteogenic differentiation also show reduced ß-catenin signaling. Knockdown of TIMPs permits normal differentiation of CS MSCs into osteoblasts and enhances ß-catenin signaling in a RUNX2-independent manner. Thus, this study demonstrates that enhanced TIMP expression induced by hyperactivated SMAD3 signaling impairs the osteogenic development of CS MSCs via an inactivation of ß-catenin signaling.


Assuntos
Diferenciação Celular/genética , Síndrome de Costello/genética , Proteínas da Matriz Extracelular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Fosfatase Alcalina/metabolismo , Calcificação Fisiológica/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Síndrome de Costello/metabolismo , Síndrome de Costello/patologia , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Transdução de Sinais/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
J Vis Exp ; (144)2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30882797

RESUMO

The development of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) into therapeutic modalities requires the avoidance of its potentially deleterious off-target effects. Several methods have been devised to reduce such effects. Here, we present an Escherichia coli-based directed evolution method called Sniper-screen to obtain a Cas9 variant with optimized specificity and retained on-target activity, called Sniper-Cas9. Using Sniper-screen, positive and negative selection can be performed simultaneously. The screen can also be repeated with other single-guide RNA (sgRNA) sequences to enrich for the true positive hits. By using the CMV-PltetO1 dual promoter to express Cas9 variants, the performance of the pooled library can be quickly checked in mammalian cells. Methods to increase the specificity of Sniper-Cas9 are also described. First, the use of truncated sgRNAs has previously been shown to increase Cas9 specificity. Unlike other engineered Cas9s, Sniper-Cas9 retains a wild-type (WT) level of on-target activity when combined with truncated sgRNAs. Second, the delivery of Sniper-Cas9 in a ribonucleoprotein (RNP) format instead of a plasmid format is possible without affecting its on-target activity.


Assuntos
Sistemas CRISPR-Cas/genética , Biblioteca Gênica , Humanos
6.
Nat Commun ; 9(1): 3048, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082838

RESUMO

The use of CRISPR-Cas9 as a therapeutic reagent is hampered by its off-target effects. Although rationally designed S. pyogenes Cas9 (SpCas9) variants that display higher specificities than the wild-type SpCas9 protein are available, these attenuated Cas9 variants are often poorly efficient in human cells. Here, we develop a directed evolution approach in E. coli to obtain Sniper-Cas9, which shows high specificities without killing on-target activities in human cells. Unlike other engineered Cas9 variants, Sniper-Cas9 shows WT-level on-target activities with extended or truncated sgRNAs with further reduced off-target activities and works well in a preassembled ribonucleoprotein (RNP) format to allow DNA-free genome editing.


Assuntos
Sistemas CRISPR-Cas , Evolução Molecular Direcionada , DNA/genética , Escherichia coli/genética , Edição de Genes , Células HEK293 , Humanos , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes/química , Ribonucleoproteínas/química , Especificidade por Substrato
7.
Prog Neuropsychopharmacol Biol Psychiatry ; 31(6): 1182-8, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17532107

RESUMO

The aim of the current study was to evaluate the relationship between quetiapine's effect on the improvement of mood symptoms in bipolar patients and brain metabolite level changes as measured by proton magnetic resonance spectroscopy ((1)H-MRS). Rapid cycling bipolar patients in the manic state were recruited and treated with quetiapine for 12 weeks. Clinical assessment was performed using the Young Mania Rating Scale (YMRS), the 17-item Hamilton Depression Rating Scale (HDRS) and the Clinical Global Impression-Severity scale (CGI-S) at baseline and weekly intervals during the 12-week period. In order to evaluate metabolite level changes over time, (1)H-MRS scans were acquired at baseline and week 12. There were significant reductions in YMRS scores (by 43.0%), HDRS scores (by 27.5%) and CGI-S score (by 44.6%) over the 12 week-period. Lactate levels significantly decreased over the 12-week study period (22.4%). This change in lactate levels was more prominent in quetiapine responders than in non-responders. Additionally, there was a positive correlation between changes in lactate levels and those in YMRS scores (r=0.52, p=0.003). Our findings suggest that quetiapine's antimanic and antidepressant efficacy in patients with rapid cycling bipolar disorder may potentially be related to decreased lactate levels in frontal regions of the brain.


Assuntos
Antipsicóticos/administração & dosagem , Transtorno Bipolar/metabolismo , Dibenzotiazepinas/administração & dosagem , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Prótons , Adulto , Análise de Variância , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fumarato de Quetiapina , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA