Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 134(4): 599-609, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18724933

RESUMO

The Drosophila MSL complex associates with active genes specifically on the male X chromosome to acetylate histone H4 at lysine 16 and increase expression approximately 2-fold. To date, no DNA sequence has been discovered to explain the specificity of MSL binding. We hypothesized that sequence-specific targeting occurs at "chromatin entry sites," but the majority of sites are sequence independent. Here we characterize 150 potential entry sites by ChIP-chip and ChIP-seq and discover a GA-rich MSL recognition element (MRE). The motif is only slightly enriched on the X chromosome ( approximately 2-fold), but this is doubled when considering its preferential location within or 3' to active genes (>4-fold enrichment). When inserted on an autosome, a newly identified site can direct local MSL spreading to flanking active genes. These results provide strong evidence for both sequence-dependent and -independent steps in MSL targeting of dosage compensation to the male X chromosome.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/genética , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Masculino , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Cromossomo X/metabolismo
2.
Metab Eng ; 59: 142-150, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061966

RESUMO

We engineered a type II methanotroph, Methylosinus trichosporium OB3b, for 3-hydroxypropionic acid (3HP) production by reconstructing malonyl-CoA pathway through heterologous expression of Chloroflexus aurantiacus malonyl-CoA reductase (MCR), a bifunctional enzyme. Two strategies were designed and implemented to increase the malonyl-CoA pool and thus, increase in 3HP production. First, we engineered the supply of malonyl-CoA precursors by overexpressing endogenous acetyl-CoA carboxylase (ACC), substantially enhancing the production of 3HP. Overexpression of biotin protein ligase (BPL) and malic enzyme (NADP+-ME) led to a ∼22.7% and ∼34.5% increase, respectively, in 3HP titer in ACC-overexpressing cells. Also, the acetyl-CoA carboxylation bypass route was reconstructed to improve 3HP productivity. Co-expression of methylmalonyl-CoA carboxyltransferase (MMC) of Propionibacterium freudenreichii and phosphoenolpyruvate carboxylase (PEPC), which provides the MMC precursor, further improved the 3HP titer. The highest 3HP production of 49 mg/L in the OB3b-MCRMP strain overexpressing MCR, MMC and PEPC resulted in a 2.4-fold improvement of titer compared with that in the only MCR-overexpressing strain. Finally, we could obtain 60.59 mg/L of 3HP in 42 h using the OB3b-MCRMP strain through bioreactor operation, with a 6.36-fold increase of volumetric productivity compared than that in the flask cultures. This work demonstrates metabolic engineering of type II methanotrophs, opening the door for using type II methanotrophs as cell factories for biochemical production along with mitigation of greenhouse gases.


Assuntos
Proteínas de Bactérias , Chloroflexus/genética , Ácido Láctico/análogos & derivados , Engenharia Metabólica , Metano/metabolismo , Methylosinus trichosporium , Oxirredutases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Láctico/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
3.
Metab Eng ; 54: 170-179, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30986511

RESUMO

Methane-utilizing methanotrophs are fascinating systems for methane bioconversion. Methylomonas sp. DH-1, a novel type I methanotroph isolated from brewery sludge, has been evaluated as a promising candidate for an industrial bio-catalyst. Succinate has been considered one of the top building block chemicals for the agricultural, food, and pharmaceutical industries. In this study, Methylomonas sp. DH-1 was engineered to accumulate succinate as a desired product. The TCA cycle and enzymes diverting carbon flux to acetate or formate were modified or deleted to improve succinate productivity. By deleting succinate dehydrogenase (sdh) in the TCA cycle, succinate production increased dramatically ∼10 times compared to that of the wild type. In addition, the maximum succinate titer of ∼134 mg/L (DS-GL) was achieved by integrating glyoxylate shunt enzymes from the E. coli MG1655 strain. Pyruvate formate lyase (pfl) and acetate kinase-phosphotransacetylase (ack-pta) genes were disrupted to further concentrate carbon flux to the TCA cycle. However, these additional disruptions of competitive pathways did not affect cell growth or succinate production positively. The mutant strain DS-GL, which showed the best succinate production, was grown in a fed-batch bioreactor, and higher cell growth and succinate production (∼195 mg/L succinate with 0.0789 g-succinate/g-methane yield) were achieved. In this study, we demonstrated a novel platform for microbial conversion of methane to succinate using methanotroph.


Assuntos
Engenharia Metabólica , Metano/metabolismo , Methylomonas , Ácido Succínico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico/genética , Methylomonas/genética , Methylomonas/metabolismo
4.
Molecules ; 24(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736408

RESUMO

The biological production of ethanol from ethane for the utilization of ethane in natural gas was investigated under ambient conditions using whole-cell methanotrophs possessing methane monooxygenase. Several independent variables including ethane concentration and biocatalyst amounts, among other factors, were optimized for the enhancement of ethane-to-ethanol bioconversion. We obtained 0.4 g/L/h of volumetric productivity and 0.52 g/L of maximum titer in optimum batch reaction conditions. In this study, we demonstrate that the biological gas-to-liquid conversion of ethane to ethanol has potent technical feasibility as a new application of ethane gas.


Assuntos
Etano/metabolismo , Etanol/metabolismo , Oxigenases/metabolismo , Bactérias/metabolismo , Biotransformação , Oxirredução , Termodinâmica
5.
Metab Eng ; 47: 323-333, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29673960

RESUMO

Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The engineered strain 20Z/pBudK.p, harboring the 2,3-BDO synthesis gene cluster (budABC) from Klebsiella pneumoniae, accumulated 2,3-BDO in methane-fed shake flask cultures with a titer of 35.66 mg/L. Expression of the most efficient gene cluster was optimized using selection of promoters, translation initiation rates (TIR), and the combination of 2,3-BDO synthesis genes from different sources. A higher 2,3-BDO titer of 57.7 mg/L was measured in the 20Z/pNBM-Re strain with budA of K. pneumoniae and budB of Bacillus subtilis under the control of the Tac promoter. The genome-scale metabolic network reconstruction of M. alcaliphilum 20Z enabled in silico gene knockout predictions using an evolutionary programming method to couple growth and 2,3-BDO production. The ldh, ack, and mdh genes in M. alcaliphilum 20Z were identified as potential knockout targets. Pursuing these targets, a triple-mutant strain ∆ldh ∆ack ∆mdh was constructed, resulting in a further increase of the 2,3-BDO titer to 68.8 mg/L. The productivity of this optimized strain was then tested in a fed-batch stirred tank bioreactor, where final product concentrations of up to 86.2 mg/L with a yield of 0.0318 g-(2,3-BDO) /g-CH4 were obtained under O2-limited conditions. This study first demonstrates the strategy of in silico simulation-guided metabolic engineering and represents a proof-of-concept for the production of value-added compounds using systematic approaches from engineered methanotrophs.


Assuntos
Butileno Glicóis/metabolismo , Engenharia Metabólica , Metano/metabolismo , Methylococcaceae , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/genética , Methylococcaceae/genética , Methylococcaceae/metabolismo
6.
Appl Microbiol Biotechnol ; 102(7): 3071-3080, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29492639

RESUMO

Methane is a promising next-generation carbon feedstock for industrial biotechnology due to its low price and huge availability. Biological conversion of methane to valuable products can mitigate methane-induced global warming as greenhouse gas. There have been challenges for the conversion of methane into various chemicals and fuels using engineered non-native hosts with synthetic methanotrophy or methanotrophs with the reconstruction of synthetic pathways for target products. Herein, we analyze the technical challenges and issues of potent methane bioconversion technology. Pros and cons of metabolic engineering of methanotrophs for methane bioconversion, and perspectives on the bioconversion of methane to chemicals and liquid fuels are discussed.


Assuntos
Biocombustíveis , Microbiologia Industrial/tendências , Metano/metabolismo , Biotecnologia , Microbiologia Industrial/normas , Engenharia Metabólica , Metano/química
7.
PLoS Genet ; 8(7): e1002830, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844249

RESUMO

Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL) histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal) complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.


Assuntos
Proteínas de Ligação a DNA , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila , Drosophila melanogaster , Fatores de Transcrição , Cromossomo X/genética , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Proteínas Nucleares/genética , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte Vesicular
8.
Int J Biol Macromol ; 257(Pt 2): 128687, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101655

RESUMO

Synthetic biodegradable and bio-based polymers have emerged as sustainable alternatives to nonrenewable petroleum-derived polymers which cause serious environmental issues. In particular, polyhydroxyalkanoates (PHA) are promising biopolymers owing to their outstanding biodegradability and biocompatibility. The production of the homopolymer poly(3-hydroxybutyrate) (PHB) and copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from type II methanotrophs via microbial fermentation was presented. For the efficient extraction and recovery of intracellular PHA from methanotrophs, different extraction approaches were investigated including solvent extraction using 1,3-dioxolane as a green solvent, integrated cell lysis and solvent extraction, and cell digestion without the use of organic solvents. Among various extraction approaches, the integrated method exhibited the highest extraction performance, with PHA recovery and purity exceeding 91 % and 93 %, respectively, even when the PHA content of the cells was low. Furthermore, the molecular weight, thermal stability, and mechanical properties of the recovered PHA were comprehensively analyzed to suggest its suitable practical applications. The obtained properties were comparable to that of the commercial PHA products and PHA produced from other microbial species, indicating an efficient recovery of high-quality PHA produced from methanotrophs.


Assuntos
Poli-Hidroxialcanoatos , Biopolímeros , Ácido 3-Hidroxibutírico , Hidroxibutiratos , Solventes
9.
J Nanosci Nanotechnol ; 13(3): 2266-71, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23755677

RESUMO

We developed two nanoimmobilized biocatalyst systems of thermally unstable Mugil cephalus epoxide hydrolase (McEH) for enantioselective resolution of racemic styrene oxide in aqueous buffer. The recombinant and purified McEH enzyme was immobilized onto magnetic nanoparticles (Mag-NPs) via a two step process of enzyme precipitation and crosslinking. McEH enzyme was also adsorbed, precipitated, and cross-linked in/on polyaniline nanofibers (PANFs). The residual relative activity of free McEH, defined as the ratio of residual activity to the initial activity, was 8% after incubation at 30 degrees C for 80 h while those of McEH immobilized onto Mag-NPs and in/on PANFs were 15% and 33% in the same condition, respectively. McEH immobilizations onto Mag-NPs and in/on PANFs could be reused in seven repetitive batch reactions for enantioselective hydrolysis of racemic styrene oxide to prepare (S)-styrene oxide with 98% enantiomeric excess (ee) while retaining greater than 40-50% of their initial activity.

10.
Bioresour Technol ; 389: 129851, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813317

RESUMO

Methanotrophs are environmentally friendly microorganisms capable of converting gas to liquid using methane monooxygenases (MMOs). In addition to methane-to-methanol conversion, MMOs catalyze the conversion of alkanes to alcohols and alkenes to epoxides. Herein, the efficacy of epoxidation by type I and II methanotrophs was investigated, and type II methanotrophs were observed to be more efficient in converting alkenes to epoxides. Subsequently, three (Epoxide hydrolase) EHs of different origins were overexpressed in the type II methanotroph Methylosinus trichosporium OB3b to produce 1,2-diols from epoxide. Methylosinus trichosporium OB3b expressing Caulobacter crescentus EH produced the highest amount of (R)-1,2-propanediol (251.5 mg/L) from 1-propene. These results demonstrate the possibility of using methanotrophs as a microbial platform for diol production and the development of a continuous bioreactor for industrial applications.


Assuntos
Methylosinus trichosporium , Oxigenases , Oxigenases/genética , Oxigenases/química , Álcoois , Metano , Alcanos , Metanol , Compostos de Epóxi
11.
Bioresour Technol ; 389: 129853, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813313

RESUMO

The production of polyhydroxyalkanoates (PHAs) through the biological conversion of methane is a promising solution to address both methane emissions and plastic waste. Type II methanotrophs naturally accumulate a representative PHA, poly(3-hydroxybutyrate) (PHB), using methane as the sole carbon source. In this study, we aimed to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV copolymer) with improved properties compared with PHB, using the type II methanotroph, Methylocystis sp. MJC1. We optimized the pH, valerate concentration, and valerate supply time in a one-step cultivation process using a gas bioreactor to enhance PHBV copolymer production yield and the 3-hydroxyvalerate (3HV) molar fraction. Under the optimal conditions, the biomass reached 21.3 g DCW/L, and PHBV copolymer accumulation accounted for 41.9 % of the dried cell weight, with a 3HV molar fraction of 28.4 %. The physicochemical properties of the purified PHBV copolymer were characterized using NMR, FTIR, TGA, DSC, and GPC.


Assuntos
Methylocystaceae , Poliésteres , Hidroxibutiratos , Valeratos , Metano
12.
PLoS One ; 18(5): e0284846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163531

RESUMO

Biodegradable polyhydroxybutyrate (PHB) can be produced from methane by some type II methanotroph such as the genus Methylocystis. This study presents the comparative genomic analysis of a newly isolated methanotroph, Methylocystis sp. MJC1 as a biodegradable PHB-producing platform strain. Methylocystis sp. MJC1 accumulates up to 44.5% of PHB based on dry cell weight under nitrogen-limiting conditions. To facilitate its development as a PHB-producing platform strain, the complete genome sequence of Methylocystis sp. MJC1 was assembled, functionally annotated, and compared with genomes of other Methylocystis species. Phylogenetic analysis has shown that Methylocystis parvus to be the closest species to Methylocystis sp. MJC1. Genome functional annotation revealed that Methylocystis sp. MJC1 contains all major type II methanotroph biochemical pathways such as the serine cycle, EMC pathway, and Krebs cycle. Interestingly, Methylocystis sp. MJC1 has both particulate and soluble methane monooxygenases, which are not commonly found among Methylocystis species. In addition, this species also possesses most of the RuMP pathway reactions, a characteristic of type I methanotrophs, and all PHB biosynthetic genes. These comparative analysis would open the possibility of future practical applications such as the development of organism-specific genome-scale models and application of metabolic engineering strategies to Methylocystis sp. MJC1.


Assuntos
Metano , Methylocystaceae , Filogenia , Metano/metabolismo , Genômica , Methylocystaceae/genética , Methylocystaceae/metabolismo
13.
Nat Cell Biol ; 5(11): 987-93, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14562058

RESUMO

During early embryogenesis in Drosophila melanogaster, extensive vesicle transport occurs to build cell boundaries for 6,000 nuclei. Here we show that this important process depends on a functional complex formed between the tumour suppressor and adaptor protein Discs-Large (Dlg) and the integral membrane protein Strabismus (Stbm)/Van Gogh (Vang). In support of this idea, embryos with mutations in either dlg or stbm displayed severe defects in plasma membrane formation. Conversely, overexpression of Dlg and Stbm synergistically induced excessive plasma membrane formation. In addition, ectopic co-expression of Stbm (which associated with post-Golgi vesicles) and the mammalian Dlg homologue SAP97/hDlg promoted translocation of SAP97 from the cytoplasm to both post-Golgi vesicles and the plasma membrane. This effect was dependent on the interaction between Stbm and SAP97. These findings suggest that the Dlg-Stbm complex recruits membrane-associated proteins and lipids from internal membranes to sites of new plasma membrane formation.


Assuntos
Membrana Celular , Proteínas de Drosophila/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Células COS , Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Desenvolvimento Embrionário , Imuno-Histoquímica , Mutação , Técnicas do Sistema de Duplo-Híbrido
14.
Carbohydr Polym ; 267: 118158, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119132

RESUMO

Alginate is a biopolymer used extensively in the food, pharmaceutical, and chemical industries. Alginate oligosaccharides (AOS) derived from alginate exhibit superior biological activities and therapeutic potential. Alginate lyases with characteristic substrate specificity can facilitate the production of a broad array of AOS with precise structure and functionality. By adopting innovative analytical tools in conjunction with focused clinical studies, the structure-bioactivity relationship of a number of AOS has been brought to light. This review covers fundamental aspects and recent developments in AOS research. Enzymatic and microbial processes involved in AOS production from brown algae and sequential steps involved in AOS structure elucidation are outlined. Biological mechanisms underlying the health benefits of AOS and their potential industrial and therapeutic applications are elaborated. Withal, various challenges in AOS research are traced out, and future directions, specifically on recombinant systems for AOS preparation, are delineated to further widen the horizon of these exceptional oligosaccharides.


Assuntos
Alginatos/uso terapêutico , Oligossacarídeos/uso terapêutico , Alginatos/química , Alginatos/isolamento & purificação , Animais , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Engenharia Metabólica , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Polissacarídeo-Liases/química , Engenharia de Proteínas
15.
Biotechnol Adv ; 47: 107700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33548453

RESUMO

Methane, the predominant element in natural gas and biogas, represents a promising alternative to carbon feedstocks in the biotechnological industry due to its low cost and high abundance. The bioconversion of methane to value-added products can enhance the value of gas and mitigate greenhouse gas emissions. Methanotrophs, methane-utilizing bacteria, can make a significant contribution to the production of various valuable biofuels and chemicals from methane. Type II methanotrophs in comparison with Type I methanotrophs have distinct advantages, including high acetyl-CoA flux and the co-incorporation of two important greenhouse gases (methane and CO2), making it a potential microbial cell-factory platform for methane-derived biomanufacturing. Herein, we review the most recent advances in Type II methanotrophs related to multi-omics studies and metabolic engineering. Representative examples and prospects of metabolic engineering strategies for the production of suitable products are also discussed.


Assuntos
Biocombustíveis , Metano , Acetilcoenzima A , Biotecnologia , Engenharia Metabólica
16.
Biotechnol Lett ; 30(1): 127-33, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17665136

RESUMO

Enantio-convergent hydrolysis of racemic styrene oxides was achieved to prepare enantiopure (R)-phenyl-1,2-ethanediol by using two recombinant epoxide hydrolases (EHs) of a bacterium, Caulobacter crescentus, and a marine fish, Mugil cephalus. The recombinant C. crescentus EH primarily attacked the benzylic carbon of (S)-styrene oxide, while the M. cephalus EH preferentially attacked the terminal carbon of (R)-styrene oxide, thus leading to the formation of (R)-phenyl-1,2-ethanediol as the main product. (R)-Phenyl-1,2-ethanediol was obtained with 90% enantiomeric excess and yield as high as 94% from 50 mM racemic styrene oxides in a one-pot process.


Assuntos
Caulobacter crescentus/enzimologia , Caulobacter crescentus/genética , Compostos de Epóxi/química , Etilenoglicóis/síntese química , Peixes/metabolismo , Hidrolases/química , Animais , Biologia Marinha , Proteínas Recombinantes/química
17.
Mar Biotechnol (NY) ; 20(3): 410-423, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29532336

RESUMO

4-Deoxy-L-erythro-hexoseulose uronic acid (DEH) reductase is a key enzyme in alginate utilizing metabolism, but the number of characterized DEH reductase is quite limited. In this study, novel two DEH reductases, VsRed-1 and VsRed-2, were identified in marine bacterium Vibrio splendidus, and the recombinant enzymes were expressed in an Escherichia coli system and purified by Ni-NTA chromatography. The optimal pH and temperature of the recombinant VsRed-1 and VsRed-2 were pH 7.5, 30 °C, and pH 7.0, 35 °C, respectively. The specific activities of VsRed-1 (776 U/mg for NADH) and VsRed-2 (176 U/mg for NADPH) were the highest among the DEH reductases reported so far. We also demonstrated that DEH could be converted to L-lactate with a yield of 76.7 and 81.9% in E. coli cell-free system containing VsRed-1 and VsRed-2 enzymes, respectively, indicating that two DEH reductases can be employed for production of biofuels and bio-chemicals from brown macroalgae biomass.


Assuntos
Escherichia coli/metabolismo , Lactatos/metabolismo , Oxirredutases/metabolismo , Phaeophyceae/microbiologia , Ácidos Urônicos/metabolismo , Vibrio/metabolismo , Biomassa , Oxirredutases/genética
18.
Bioresour Technol ; 211: 472-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27035480

RESUMO

Heterotrophic microalgae, Aurantiochytrium sp. KRS101 had a large amount of lipid (56.8% total lipids). The cells in the culture medium were easily ruptured due to thin cell wall of Aurantiochytrium sp., which facilitated in-situ fatty acid methyl esters (FAMEs) production directly from biomass. The harvested biomass had a high content of free fatty acids (FFAs), which was advantageous for glycerol-free FAMEs production. FAMEs were directly produced from Aurantiochytrium sp. KRS101 biomass (48.4% saponifiable lipids) using Novozyme 435-catalyzed in-situ esterification in dimethyl carbonate (DMC). DMC was used as a lipid extraction reagent, acyl acceptor and reaction medium. A 433.09mg FAMEs/g biomass was obtained with 89.5% conversion under the optimal condition: DMC to biomass ratio of 5:1 (v/w) and enzyme to biomass ratio of 30% (w/w) at 50°C for 12h. Glycerol could not be detected in the produced FAMEs.


Assuntos
Biocatálise , Biocombustíveis , Biomassa , Glicerol/metabolismo , Processos Heterotróficos , Lipase/metabolismo , Microalgas/metabolismo , Estramenópilas/metabolismo , Biocatálise/efeitos dos fármacos , Enzimas Imobilizadas , Esterificação/efeitos dos fármacos , Ésteres/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Formiatos/farmacologia , Proteínas Fúngicas , Processos Heterotróficos/efeitos dos fármacos , Hidróxidos/farmacologia , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Compostos de Potássio/farmacologia , Solventes , Estramenópilas/efeitos dos fármacos , Estramenópilas/crescimento & desenvolvimento , Temperatura , Fatores de Tempo , Água/farmacologia
19.
Sci Rep ; 6: 31863, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535473

RESUMO

ADAMTS (a disintegrin and metalloproteases with thrombospondin motif) family consists of secreted proteases, and is shown to cleave extracellular matrix proteins. Their malfunctions result in cancers and disorders in connective tissues. We report here that a Drosophila ADAMTS named Sol narae (Sona) promotes Wnt/Wingless (Wg) signaling. sona loss-of-function mutants are lethal and rare escapers had malformed appendages, indicating that sona is essential for fly development and survival. sona exhibited positive genetic interaction with wntless (wls) that encodes a cargo protein for Wg. Loss of sona decreased the level of extracellular Wg, and also reduced the expression level of Wg effector proteins such as Senseless (Sens), Distalless (Dll) and Vestigial (Vg). Sona and Wg colocalized in Golgi and endosomal vesicles, and were in the same protein complex. Furthermore, co-expression of Wg and Sona generated ectopic wing margin bristles. This study suggests that Sona is involved in Wg signaling by regulating the level of extracellular Wg.


Assuntos
Proteínas ADAMTS/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Proteína Wnt1/metabolismo , Proteínas ADAMTS/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteína Wnt1/genética
20.
Bioresour Technol ; 196: 22-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26218538

RESUMO

The residual biomass of Chlorella sp. KR-1 obtained after lipid extraction was used for saccharification and bioethanol production. The carbohydrate was saccharified using simple enzymatic and chemical methods using Pectinex at pH 5.5 and 45°C and 0.3N HCl at 121°C for 15min with 76.9% and 98.2% yield, respectively, without any pretreatment. The residual biomass contained 49.7% carbohydrate consisting of 82.4% fermentable sugar and 17.6% non-fermentable sugar, which is valuable for bioethanol fermentation. Approximately 98.2% of the total carbohydrate was converted into monosaccharide (fermentable+non-fermentable sugar) using dilute acid saccharification. The fermentable sugar was subsequently fermented to bioethanol through separate hydrolysis and fermentation with a fermentation yield of 79.3%. Overall, 0.4g ethanol/g fermentable sugar and 0.16g ethanol/g residual biomass were produced.


Assuntos
Biocombustíveis/análise , Biomassa , Biotecnologia/métodos , Carboidratos/química , Chlorella/metabolismo , Etanol/metabolismo , Lipídeos/isolamento & purificação , Ácidos/farmacologia , Fermentação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidrólise , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA