Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 720: 150066, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749193

RESUMO

Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.


Assuntos
Antígeno CD47 , Progressão da Doença , Neoplasias Pulmonares , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Humanos , Animais , Linhagem Celular Tumoral , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Camundongos , Evasão Tumoral , Evasão da Resposta Imune , Microambiente Tumoral/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Feminino , Estadiamento de Neoplasias
2.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175755

RESUMO

Thyroid cancer (TC) is the most common endocrine malignancy. Recently, the global incidence of TC has increased rapidly. Differentiated thyroid cancer includes papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC), which are the most common types of TC. Although PTCs and FTCs exert good prognoses and high survival rates, FTCs tend to be more aggressive than PTCs. There is an urgent need to improve patient outcomes by developing effective therapeutic agents for FTCs. Piperlongumine exerts anti-cancer effects in various human carcinomas, including human anaplastic TCs and PTCs. However, the anti-cancer effects of piperlongumine in FTCs and the underlying mechanisms are yet to be elucidated. Therefore, in the present study, we evaluated the effect of piperlongumine on cell proliferation, cell cycle, apoptosis, and autophagy in FTC cells with flowcytometry and Western blot. We observed that piperlongumine caused growth inhibition, cell cycle arrest, apoptosis induction, and autophagy elevation in FTC cells. Activities of reactive oxygen species and the downstream PI3K/Akt pathway were the underlying mechanisms involved in piperlongumine mediated anti-FTC effects. Advancements in our understanding of the effects of piperlongumine in FTC hold promise for the development of novel therapeutic strategies.


Assuntos
Adenocarcinoma Folicular , Neoplasias da Glândula Tireoide , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Adenocarcinoma Folicular/patologia , Transdução de Sinais , Neoplasias da Glândula Tireoide/patologia , Apoptose , Autofagia
3.
IUBMB Life ; 74(2): 170-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34553486

RESUMO

Autophagy is not only an intracellular recycling degradation system that maintains cellular homeostasis but is also a component of innate immunity that contributes to host defense against viral infection. The viral components as well as viral particles trapped in autophagosomes can be delivered to lysosomes for degradation. Abundant evidence indicates that dengue virus (DENV) has evolved the potent ability to hijack or subvert autophagy process for escaping host immunity and promoting viral replication. Moreover, autophagy is often required to deliver viral components to pattern recognition receptors signaling for interferon (IFN)-mediated viral elimination. Hence, this review summarizes DENV-induced autophagy, which exhibits dual effects on proviral activity of promoting replication and antiviral activity to eliminating viral particles.


Assuntos
Vírus da Dengue , Dengue , Viroses , Autofagia , Dengue/genética , Humanos , Imunidade Inata , Transdução de Sinais , Replicação Viral
4.
Int J Med Sci ; 19(10): 1567-1575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185334

RESUMO

Bladder carcinoma is one of the most common malignancies worldwide, and >90% of all bladder cancers are classified as urothelial carcinomas (UC). Surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy are evidence-based treatments that are administered depending on the clinical stage of UC. All these treatments exhibited limited effects in cases of metastatic UC, and UC with specific location, invasiveness, and recurrence. Therefore, a new therapeutic strategy for UC is urgently needed. Ivermectin, an avermectin derivative, has been reported to be effective against various parasites, and its pharmacokinetic and pharmacodynamic properties as well as safety are well understood in humans. Recently, ivermectin was shown to exhibit therapeutic benefits against various virus infections in vitro, and anticancer activity against various human cancer cells. This study aimed to investigate the anticancer effects of ivermectin in human UC cells. Ivermectin inhibited growth, regulated the cell cycle, and induced apoptosis in human UC cells. It also induced the activation of both extrinsic and intrinsic caspase-dependent apoptotic pathways. Further investigation revealed that ivermectin induced apoptosis in UC cells is mediated via c-Jun N-terminal kinase signaling. Herein, we demonstrated that ivermectin can be used as a new therapeutic agent for treating UC cells.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Apoptose , Caspases , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Proteínas Quinases JNK Ativadas por Mitógeno , Neoplasias da Bexiga Urinária/patologia
5.
Cell Biochem Funct ; 39(3): 367-379, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33135206

RESUMO

Lung cancer is one of the leading causes of cancer-related death worldwide. The most common type of lung cancer is non-small cell lung cancer (NSCLC). When NSCLC is detected, patients are typically already in a metastatic stage. Metastasized cancer is a major obstacle of effective treatment and understanding the mechanisms underlying metastasis is critical to treat cancer. Herein, we selected an invasive subpopulation from the human lung cancer cell line A549 using the transwell system and named it as A549-I5. Invasive and migratory activities of this cell line were analysed using wound healing, invasion, and migration assays. In addition, epithelial-mesenchymal transition (EMT) markers, such as Snail 1, Twist, Vimentin, N-cadherin and E-cadherin, were assessed through immunoblotting. In comparison to A549 cells, the invasive A549-I5 lung cancer cells had enhanced invasiveness, motility and EMT marker expression. Proteomic analysis identified 83 significantly differentially expressed proteins in A549-I5 cells. These identified proteins were classified according to their cellular functions and most were involved in cytoskeleton, redox regulation, protein degradation and protein folding. In summary, our results provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis. SIGNIFICANCE OF THE STUDY: When NSCLC is detected, most patients are already in a metastatic stage. Herein, we selected an invasive subpopulation from a human lung cancer cell line which had increased EMT markers as well as high wound healing, invasion and migration abilities. Proteomic analysis identified numerous proteins associated with functions in cytoskeleton, redox regulation, protein degradation and protein folding that were differentially expressed in these cells. These results may provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células A549 , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Proteínas de Neoplasias/genética
6.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576028

RESUMO

Lung cancer is one of the most common cancers and the leading cause of death in humans worldwide. Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases and is often diagnosed at a late stage. Among patients with NSCLC, 50% die within 1 year after diagnosis. Even with clinical intervention, the 5-year survival rate is only approximately 20%. Therefore, the development of an advanced therapeutic strategy or novel agent is urgently required for treating NSCLC. Berberine exerts therapeutic activity toward NSCLC; therefore, its activity as an antitumor agent needs to be explored further. In this study, three terpenylated-bromide derivatives of berberrubine were synthesized and their anti-NSCLC activities were evaluated. Each derivative had higher anti-NSCLCs activity than berberrubine and berberine. Among them, 9-O-gernylberberrubine bromide (B4) and 9-O-farnesylberberrubine bromide (B5) showed greater growth inhibition, cell-cycle regulation, in vitro tumorigenesis suppression, and tumor migration reduction. In addition, some degree of apoptosis and autophagic flux blocking was noted in the cells under B4 and B5 treatments. Our study demonstrates that the berberrubine derivatives, B4 and B5, exhibit impressive anti-NSCLC activities and have potential for use as chemotherapeutic agents against NSCLC.


Assuntos
Berberina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células A549 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Berberina/síntese química , Berberina/química , Berberina/farmacologia , Brometos/química , Carcinogênese/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Terpenos/síntese química , Terpenos/farmacologia
7.
J Cell Mol Med ; 24(17): 9737-9751, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32672400

RESUMO

Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five-year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3-I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3-I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3-I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, vimentin and vinculin was increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.


Assuntos
Proliferação de Células/genética , Proteínas de Membrana/genética , Neoplasias Bucais/genética , Proteínas de Neoplasias/genética , Receptores de Progesterona/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Xenoenxertos , Humanos , Camundongos , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Proteômica
8.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731544

RESUMO

Autophagy is a potential target for the treatment of triple negative breast cancer (TNBC). Because of a lack of targeted therapies for TNBC, it is vital to find optimal agents that avoid chemoresistance and metastasis. Flavopereirine has anti-proliferation ability in cancer cells, but whether it regulates autophagy in breast cancer cells remains unclear. A Premo™ Tandem Autophagy Sensor Kit was used to image the stage at which flavopereirine affects autophagy by confocal microscopy. A plasmid that constitutively expresses p-AKT and siRNA targeting p38 mitogen-activated protein kinase (MAPK) was used to confirm the related signaling pathways by Western blot. We found that flavopereirine induced microtubule-associated protein 1 light chain 3 (LC3)-II accumulation in a dose- and time-dependent manner in MDA-MB-231 cells. Confocal florescent images showed that flavopereirine blocked autophagosome fusion with lysosomes. Western blotting showed that flavopereirine directly suppressed p-AKT levels and mammalian target of rapamycin (mTOR) translation. Recovery of AKT phosphorylation decreased the level of p-p38 MAPK and LC3-II, but not mTOR. Moreover, flavopereirine-induced LC3-II accumulation was partially reduced in MDA-MB-231 cells that were transfected with p38 MAPK siRNA. Overall, flavopereirine blocked autophagy via LC3-II accumulation in autophagosomes, which was mediated by the AKT/p38 MAPK signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Carbolinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos
9.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545770

RESUMO

Lung cancer is the leading cause of death in the world, and the most common type of lung cancer is non-small-cell lung cancer (NSCLC), accounting for 85% of lung cancer. Patients with NSCLC, when detected, are mostly in a metastatic stage, and over half of patients diagnosed with NSCLC die within one year after diagnosis; the 5-year survival rate is 24%. However, in patients with metastatic NSCLC, the 5-year survival rate is 6%. Therefore, development of a new therapeutic agent or strategy is urgent for NSCLCs. Berberine has been illustrated to be a therapeutic agent of NSCLC. In the present study, we synthesized six derivatives of berberine, and the anti-NSCLC activity of these agents was examined. Some of them exert increasing proliferation inhibition comparing with berberine. Further studies demonstrated that two of the most effective agents, 9-O-decylberberrubine bromide (B6) and 9-O-dodecylberberrubine bromide (B7), performed cell cycle regulation, in-vitro tumorigenesis inhibition and autophagic flux blocking, but not induction of cellular apoptosis in NSCLC cells. Moreover, B6 and B7 were determined to be green fluorescent and could be penetrated and localized in cellular mitochondria. Herein, B6 and B7, the berberine derivatives we synthesized, revealed better anti-NSCLC activity with berberine and may be used as therapeutic candidates for the treatment of NSCLCs.


Assuntos
Antineoplásicos/síntese química , Berberina/análogos & derivados , Brometos/síntese química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Brometos/química , Brometos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular
10.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731481

RESUMO

Aloperine, an alkaloid isolated from Sophora alopecuroides, exhibits multiple pharmacological activities including anti-inflammatory, antioxidant, antiallergic, antinociceptive, antipathogenic, and antitumor effects. Furthermore, it exerts protective effects against renal and neuronal injuries. Several studies have reported antitumor effects of aloperine against various human cancers, including multiple myeloma; colon, breast, and prostate cancers; and osteosarcoma. Cell cycle arrest, apoptosis induction, and tumorigenesis suppression have been demonstrated following aloperine treatment. In a previous study, we demonstrated antitumor effects of aloperine on human thyroid cancer cells through anti-tumorigenesis and caspase-dependent apoptosis induction via the Akt signaling pathway. In the present study, we demonstrated the modulation of the autophagy mechanism following the incubation of multidrug-resistant papillary and anaplastic human thyroid cancer cells with aloperine; we also illustrate the underlying mechanisms, including AMPK, Erk, JNK, p38, and Akt signaling pathways. Further investigation revealed the involvement of the Akt signaling pathway in aloperine-modulated autophagy in human thyroid cancer cells. These results indicate a previously unappreciated function of aloperine in autophagy modulation in human thyroid cancer cells.


Assuntos
Morte Celular Autofágica/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Piperidinas/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/metabolismo , Quinolizidinas , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
11.
J Cell Mol Med ; 22(3): 1894-1908, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29363886

RESUMO

Honokiol, an active natural product derived from Magnolia officinalis, exerted anticancer effects through a variety of mechanisms on multiple types of cancers. In this study, the molecular mechanisms of honokiol in suppressing the human oral squamous cell carcinoma (OSCC) cells were evaluated. Treatment of two OSCC cell lines with honokiol resulted in reducing the cell proliferation and arresting the cell cycle at G1 stage which was correlated with the down-regulation of Cdk2 and Cdk4 and the up-regulation of cell cycle suppressors, p21 and p27. In addition, the caspase-dependent programmed cell death was substantially detected, and the autophagy was induced as the autophagosome formation and autophagic flux proceeded. Modulation of autophagy by autophagic inducer, rapamycin or inhibitors, 3-MA or bafilomycin, potentiated the honokiol-mediated anti-OSCC effects where honokiol exerted multiple actions in suppression of MAPK pathway and regulation of Akt/mTOR or AMPK pathways. As compared to clinical therapeutic agent, 5-FU, honokiol exhibited more potent activity against OSCC cells and synergistically enhanced the cytotoxic effect of 5-FU. Furthermore, orally administrated honokiol exerted effective antitumour activity in vivo in OSCC-xenografted mice. Thus, this study revealed that honokiol could be a promising candidate in preventing human OSCCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Lignanas/farmacologia , Neoplasias Bucais/tratamento farmacológico , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fluoruracila/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Macrolídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Int J Mol Sci ; 19(1)2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-29361731

RESUMO

The global incidence of thyroid cancer, one of the most common endocrine malignancies, is especially high among women. Although most patients with thyroid cancers exhibit a good prognosis with standard treatment, there are no effective therapies for patients with anaplastic thyroid cancers or cancers that have reached an advanced or recurrent level. Therefore, it is important to develop highly effective compounds for treating such patients. Aloperine, a natural compound isolated from Sophora alopecuroides, has been reported to possess antioxidant, anti-inflammatory, anti-neuronal injury, anti-renal injury, antitumor, anti-allergic, and antiviral properties. In this study, we show that aloperine can inhibit cell growth in human anaplastic thyroid cancers and multidrug-resistant papillary thyroid cancers. Moreover, it could suppress in vitro tumorigenesis and promote cellular apoptosis. Further analysis demonstrated the involvement of caspase-dependent apoptosis, including intrinsic and/or extrinsic pathways, in aloperine-induced cellular apoptosis. However, cell cycle regulation was not detected with aloperine treatment. This study suggests the potential therapeutic use of aloperine in human anaplastic thyroid cancers and multidrug-resistant papillary thyroid cancers.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Piperidinas/farmacologia , Neoplasias da Glândula Tireoide/metabolismo , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Citometria de Fluxo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizidinas , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
13.
J Sci Food Agric ; 98(14): 5509-5517, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29691866

RESUMO

BACKGROUND: Gold lotion (GL), a natural mixed product made from the peels of six citrus fruits, has recently been identified as possessing anti-oxidative, anti-inflammatory, and immunomodulatory effects. GL has been used to protect skin against UV-induced damage, but its activity against psoriasis, a chronic autoimmune skin disease caused by dysregulation between immune cells and keratinocytes, is not known. We therefore evaluated the effect of GL on imiquimod (IMQ)-induced psoriasis-like inflammation in mice. RESULTS: GL treatment significantly attenuated IMQ-induced psoriasis-like symptoms in mice. The inflammatory cytokines upregulated by IMQ in skin lesions were also inhibited by feeding GL. In addition, GL treatment reduced the infiltration of CD4+ T cells/neutrophils in skin lesions and the percentage of IL-17-/IL-22-producing T cells in lymph nodes. Furthermore, GL impaired IMQ-induced type I interferon production by plasmacytoid dendritic cells (pDCs) in vitro. CONCLUSION: Our results indicate GL can act to suppress the initiation of psoriasis and strongly suggest that GL may have potential to be applied to the treatment of psoriasis. © 2018 Society of Chemical Industry.


Assuntos
Aminoquinolinas/efeitos adversos , Citrus/química , Dermatite/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Psoríase/tratamento farmacológico , Animais , Citocinas/imunologia , Dermatite/etiologia , Dermatite/imunologia , Frutas/química , Humanos , Imiquimode , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/isolamento & purificação , Psoríase/induzido quimicamente , Psoríase/imunologia
14.
Pharmacol Res ; 115: 288-298, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940017

RESUMO

Thyroid cancer is the most common endocrine malignancy, the global incidence rate of which is rapidly rising. Surgery and radioiodine therapies are common and effective treatments only for nonmetastasized primary tumors. Therefore, effective treatment modalities are imperative for patients with radioiodine-resistant thyroid cancer. Honokiol, a biophenolic compound derived from Magnolia spp., has been shown have diverse biological and pharmacological activities, including anti-inflammatory, antioxidative, antiangiogenic, and anticancer properties. In the present study, three human thyroid cancer cell lines, namely anaplastic, follicular, and poorly differentiated thyroid cancer cells, were used to evaluate the chemotherapeutic activity of honokiol. Cell viability, cell cycle, apoptosis, and autophagy induction were determined through flow cytometry and western blot analysis. We found that honokiol treatment can suppress cell growth, induce cell cycle arrest, and enhance the induction of caspase-dependent apoptosis and autophagy in cancer cells. Moreover, honokiol treatment modulated signaling pathways including Akt/mTOR, ERK, JNK, and p38 in the studied cells. In addition, the antitumorigenic activity of honokiol was also confirmed in vitro and in vivo. Our data provide evidence that honokiol has a unique application in chemotherapy for human thyroid cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Lignanas/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
15.
Int J Mol Sci ; 17(4)2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27120594

RESUMO

Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Dioxolanos/farmacologia , Acetilcisteína/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Espécies Reativas de Oxigênio/metabolismo
16.
Molecules ; 21(7)2016 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-27409597

RESUMO

Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The scavenging of reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the diseases' progression. Costunolide (CS) is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H2O2) and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H2O2 exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP), and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H2O2 through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK). These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged.


Assuntos
Antioxidantes/farmacologia , Peróxido de Hidrogênio/toxicidade , Sesquiterpenos/farmacologia , Animais , Antioxidantes/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/química
17.
BMC Cancer ; 15: 172, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25885317

RESUMO

BACKGROUND: Mutant Ras plays multiple functions in tumorigenesis including tumor formation and metastasis. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a metastasis inhibitor gene, suppresses matrix metalloproteinase (MMP) activity in the metastatic cascade. Clarifying the relationship between Ras and RECK and understanding the underlying molecular mechanism may lead to the development of better treatment for Ras-related tumors. METHODS: Suppression subtractive hybridization PCR (SSH PCR) was conducted to identify Ha-ras (val12) up-regulated genes in bladder cancer cells. Stable cell lines of human breast cancer (MCF-7-ras) and mouse NIH3T3 fibroblasts (7-4) harboring the inducible Ha-ras (val12) oncogene, which could be induced by isopropylthio-ß-D-galactoside (IPTG), were used to clarify the relationship between Ras and the up-regulated genes. Chromatin immunoprecipitation (ChIP) assay, DNA affinity precipitation assay (DAPA) and RECK reporter gene assay were utilized to confirm the complex formation and binding with promoters. RESULTS: Retinoblastoma binding protein-7 (RbAp46) was identified and confirmed as a Ha-ras (val12) up-regulated gene. RbAp46 could bind with histone deacetylase (HDAC1) and Sp1, followed by binding to RECK promoter at the Sp1 site resulting in repression of RECK expression. High expression of Ras protein accompanied with high RbAp46 and low RECK expression were detected in 75% (3/4) of the clinical bladder cancer tumor tissues compared to the adjacent normal parts. Ras induced RbAp46 expression increases invasion of the bladder cancer T24 cells and MMP-9 activity was increased, which was confirmed by specific lentiviral shRNAs inhibitors against Ras and RbAp46. Similarly, knockdown of RbAp46 expression in the stable NIH3T3 cells "7-4" by shRNA decreased Ras-related lung metastasis using a xenograft nude mice model. CONCLUSIONS: We confirmed that RbAp46 is a Ha-ras (val12) up-regulated gene and binds with HDAC1 and Sp1. Furthermore, RbAp46 binds to the RECK promoter at the Sp1 site via recruitment by Sp1. RECK is subsequently activated, leading to increased MMP9 activity, which may lead to increased metastasis in vivo. Our findings of Ras upregulation of RbAp46 may lead to revealing a novel mechanism of Ras-related tumor cell metastasis.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Genes ras , Neoplasias Pulmonares/metabolismo , Regiões Promotoras Genéticas , Proteína 7 de Ligação ao Retinoblastoma/biossíntese , Regulação para Cima , Animais , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Genes ras/fisiologia , Humanos , Neoplasias Pulmonares/patologia , Células MCF-7 , Camundongos , Camundongos Nus , Células NIH 3T3 , Regiões Promotoras Genéticas/fisiologia , Regulação para Cima/fisiologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/secundário
18.
J Biomed Sci ; 21: 80, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25139436

RESUMO

BACKGROUND: We previously reported that Enterovirus 71 (EV71) infection activates autophagy, which promotes viral replication both in vitro and in vivo. In the present study we further investigated whether EV71 infection of neuronal SK-N-SH cells induces an autophagic flux. Furthermore, the effects of autophagy on EV71-related pathogenesis and viral load were evaluated after intracranial inoculation of mouse-adapted EV71 (MP4 strain) into 6-day-old ICR suckling mice. RESULTS: We demonstrated that in EV71-infected SK-N-SH cells, EV71 structural protein VP1 and nonstructural protein 2C co-localized with LC3 and mannose-6-phosphate receptor (MPR, endosome marker) proteins by immunofluorescence staining, indicating amphisome formation. Together with amphisome formation, EV71 induced an autophagic flux, which could be blocked by NH4Cl (inhibitor of acidification) and vinblastine (inhibitor of fusion), as demonstrated by Western blotting. Suckling mice intracranially inoculated with EV71 showed EV71 VP1 protein expression (representing EV71 infection) in the cerebellum, medulla, and pons by immunohistochemical staining. Accompanied with these infected brain tissues, increased expression of LC3-II protein as well as formation of LC3 aggregates, autophagosomes and amphisomes were detected. Amphisome formation, which was confirmed by colocalization of EV71-VP1 protein or LC3 puncta and the endosome marker protein MPR. Thus, EV71-infected suckling mice (similar to EV71-infected SK-N-SH cells) also show an autophagic flux. The physiopathological parameters of EV71-MP4 infected mice, including body weight loss, disease symptoms, and mortality were increased compared to those of the uninfected mice. We further blocked EV71-induced autophagy with the inhibitor 3-methyladenine (3-MA), which attenuated the disease symptoms and decreased the viral load in the brain tissues of the infected mice. CONCLUSIONS: In this study, we reveal that EV71 infection of suckling mice induces an amphisome formation accompanied with the autophagic flux in the brain tissues. Autophagy induced by EV71 promotes viral replication and EV71-related pathogenesis.


Assuntos
Autofagia/imunologia , Enterovirus Humano A/fisiologia , Replicação Viral/fisiologia , Cloreto de Amônio/farmacologia , Animais , Animais Recém-Nascidos , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/imunologia , Vimblastina/farmacologia , Proteínas Virais/imunologia
19.
J BUON ; 19(1): 137-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24659655

RESUMO

PURPOSE: Irradiation-induced autophagy has been reported in several types of cancers, however, the relationship between irradiation and autophagy in human oral squamous cell carcinoma (OSCC) has not yet been described. In this study we investigated the induction of autophagy in cell lines by exposing them to ionizing irradiation. METHODS: Human OSCC OC3 and SAS cell lines were used in this study. Cell viability and induction of autophagy were determined under irradiation treatment. The GFP-LC3 puncta formation and the levels of LC3-II as indicators of autophagy were detected by fluorescence microscopy and Western blot method. The signaling pathways involved in irradiation-mediated autophagy were also determined by Western blot method. RESULTS: Irradiation decreased cell viability only in OC3 cells, while autophagic machinery and related signaling pathways were found to be elevated after irradiation in OC3 and SAS cells. However, autophagic degradation determined by the reduction of p62 levels was only found in OC3 cells, suggesting autophagosome accumulation took place in SAS cells. In addition, irradiation accompanied with rapamycin treatment elevated autophagy formation and induced death of OC3 cells. CONCLUSIONS: These results suggested that induction of autophagy might provide an advantageous strategy to increase the anticancer effects of radiotherapy in patients with OSCCs.


Assuntos
Autofagia/efeitos da radiação , Carcinoma de Células Escamosas/radioterapia , Neoplasias Bucais/radioterapia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Apoptose/efeitos da radiação , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Radiação Ionizante , Proteína Sequestossoma-1 , Transdução de Sinais/efeitos da radiação
20.
Kaohsiung J Med Sci ; 40(7): 631-641, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38826147

RESUMO

Autophagy is a self-recycling machinery to maintain cellular homeostasis by degrading harmful materials in the cell. Autophagy-related gene 5 (Atg5) is required for autophagosome maturation. However, the role of Atg5 in tumorigenesis under autophagy deficient conditions remains unclear. This study focused on the autophagy-independent role of Atg5 and the underlying mechanism in tumorigenesis. We demonstrated that knockout of autophagy-related genes including Atg5, Atg7, Atg9, and p62 in mouse embryonic fibroblast (MEF) cells consistently decreased cell proliferation and motility, implying that autophagy is required to maintain diverse cellular functions. An Atg7 knockout MEF (Atg7-/- MEF) cell line representing deprivation of autophagy function was used to clarify the role of Atg5 transgene in tumorigenesis. We found that Atg5-overexpressed Atg7-/-MEF (clone A) showed increased cell proliferation, colony formation, and migration under autophagy deficient conditions. Accordingly, rescuing the autophagy deficiency of clone A by overexpression of Atg7 gene shifts the role of Atg5 from pro-tumor to anti-tumor status, indicating the dual role of Atg5 in tumorigenesis. Notably, the xenograft mouse model showed that clone A of Atg5-overexpressed Atg7-/- MEF cells induced temporal tumor formation, but could not prolong further tumor growth. Finally, biomechanical analysis disclosed increased Wnt5a secretion and p-JNK expression along with decreased ß-catenin expression. In summary, Atg5 functions as a tumor suppressor to protect the cell under normal conditions. In contrast, Atg5 shifts to a pro-tumor status under autophagy deprivation conditions.


Assuntos
Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Autofagia , Carcinogênese , Proliferação de Células , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Camundongos , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Movimento Celular/genética , Humanos , Fibroblastos/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA