Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2322009121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843187

RESUMO

Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.


Assuntos
Diferenciação Celular , Lúpus Eritematoso Sistêmico , Osteopontina , Fatores de Transcrição , Animais , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Osteopontina/metabolismo , Osteopontina/genética , Camundongos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos Knockout
2.
Ann Neurol ; 88(3): 526-543, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562430

RESUMO

OBJECTIVE: Genetic variants of the cytoplasmic FMR1-interacting protein 2 (CYFIP2) encoding an actin-regulatory protein are associated with brain disorders, including intellectual disability and epilepsy. However, specific in vivo neuronal defects and potential treatments for CYFIP2-associated brain disorders remain largely unknown. Here, we characterized Cyfip2 heterozygous (Cyfip2+/- ) mice to understand their neurobehavioral phenotypes and the underlying pathological mechanisms. Furthermore, we examined a potential treatment for such phenotypes of the Cyfip2+/- mice and specified a neuronal function mediating its efficacy. METHODS: We performed behavioral analyses of Cyfip2+/- mice. We combined molecular, ultrastructural, and in vitro and in vivo electrophysiological analyses of Cyfip2+/- prefrontal neurons. We also selectively reduced CYFIP2 in the prefrontal cortex (PFC) of mice with virus injections. RESULTS: Adult Cyfip2+/- mice exhibited lithium-responsive abnormal behaviors. We found increased filamentous actin, enlarged dendritic spines, and enhanced excitatory synaptic transmission and excitability in the adult Cyfip2+/- PFC that was restricted to layer 5 (L5) neurons. Consistently, adult Cyfip2+/- mice showed increased seizure susceptibility and auditory steady-state responses from the cortical electroencephalographic recordings. Among the identified prefrontal defects, lithium selectively normalized the hyperexcitability of Cyfip2+/- L5 neurons. RNA sequencing revealed reduced expression of potassium channel genes in the adult Cyfip2+/- PFC. Virus-mediated reduction of CYFIP2 in the PFC was sufficient to induce L5 hyperexcitability and lithium-responsive abnormal behavior. INTERPRETATION: These results suggest that L5-specific prefrontal dysfunction, especially hyperexcitability, underlies both the pathophysiology and the lithium-mediated amelioration of neurobehavioral phenotypes in adult Cyfip2+/- mice, which can be implicated in CYFIP2-associated brain disorders. ANN NEUROL 2020;88:526-543.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Compostos de Lítio/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Convulsões/genética , Animais , Comportamento Animal/efeitos dos fármacos , Haploinsuficiência , Camundongos , Camundongos Mutantes , Neurônios/efeitos dos fármacos , Neurônios/patologia , Córtex Pré-Frontal/patologia , Convulsões/fisiopatologia
3.
Genes Dev ; 27(5): 485-90, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23431031

RESUMO

Proper neurological function in humans requires precise control of levels of the epigenetic regulator methyl CpG-binding protein 2 (MeCP2). MeCP2 protein levels are low in fetal brains, where the predominant MECP2 transcripts have an unusually long 3' untranslated region (UTR). Here, we show that miR-483-5p, an intragenic microRNA of the imprinted IGF2, regulates MeCP2 levels through a human-specific binding site in the MECP2 long 3' UTR. We demonstrate the inverse correlation of miR-483-5p and MeCP2 levels in developing human brains and fibroblasts from Beckwith-Wiedemann syndrome patients. Importantly, expression of miR-483-5p rescues abnormal dendritic spine phenotype of neurons overexpressing human MeCP2. In addition, miR-483-5p modulates the levels of proteins of the MeCP2-interacting corepressor complexes, including HDAC4 and TBL1X. These data provide insight into the role of miR-483-5p in regulating the levels of MeCP2 and interacting proteins during human fetal development.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Sítios de Ligação , Encéfalo/embriologia , Encéfalo/fisiopatologia , Linhagem Celular , Feto/embriologia , Feto/metabolismo , Feto/fisiopatologia , Impressão Genômica , Humanos , Neurônios/patologia , Ligação Proteica
4.
Hepatology ; 70(1): 358-371, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30810242

RESUMO

Liver-resident memory T (liver TRM ) cells exert protective immune responses following liver infection by malaria parasites. However, how these TRM cells are developed and what the consequence is if they are not properly maintained remain poorly understood. Here, we show that the transcriptional repressor, Capicua (CIC), controls liver CD8+ TRM cell development to maintain normal liver function. Cic-deficient mice have a greater number of liver CD8+ TRM cells and liver injury phenotypes accompanied by increased levels of proinflammatory cytokine genes in liver tissues. Excessive formation of CD69+ CD8+ TRM -like cells was also observed in mice with acetaminophen-induced liver injury (AILI). Moreover, expansion of liver CD8+ TRM cell population and liver injury phenotypes in T-cell-specific Cic null mice were rescued by codeletion of ETS translocation variant [Etv]5 alleles, indicating that Etv5 is a CIC target gene responsible for regulation of CD8+ TRM cell development and liver function. We also discovered that ETV5 directly regulates expression of Hobit, a master transcription factor for TRM cell development, in CD8+ T cells. Conclusion: Our findings suggest the CIC-ETV5 axis as a key molecular module that controls CD8+ TRM cell development, indicating a pathogenic role for CD8+ TRM cells in liver injury.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Proteínas de Ligação a DNA/metabolismo , Fígado/imunologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Acetaminofen , Animais , Feminino , Memória Imunológica , Masculino , Camundongos Endogâmicos C57BL , Distribuição Aleatória
5.
Cancer Cell Int ; 20: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042269

RESUMO

BACKGROUND: Although major driver gene mutations have been identified, the complex molecular heterogeneity of colorectal cancer (CRC) remains unclear. Capicua (CIC) functions as a tumor suppressor in various types of cancers; however, its role in CRC progression has not been examined. METHODS: Databases for gene expression profile in CRC patient samples were used to evaluate the association of the levels of CIC and Polyoma enhancer activator 3 (PEA3) group genes (ETS translocation variant 1 (ETV1), ETV4, and ETV5), the best-characterized CIC targets in terms of CIC functions, with clinicopathological features of CRC. CIC and ETV4 protein levels were also examined in CRC patient tissue samples. Gain- and loss-of function experiments in cell lines and mouse xenograft models were performed to investigate regulatory functions of CIC and ETV4 in CRC cell growth and invasion. qRT-PCR and western blot analyses were performed to verify the CIC regulation of ETV4 expression in CRC cells. Rescue experiments were conducted using siRNA against ETV4 and CIC-deficient CRC cell lines. RESULTS: CIC expression was decreased in the tissue samples of CRC patients. Cell invasion, migration, and proliferation were enhanced in CIC-deficient CRC cells and suppressed in CIC-overexpressing cells. Among PEA3 group genes, ETV4 levels were most dramatically upregulated and inversely correlated with the CIC levels in CRC patient samples. Furthermore, derepression of ETV4 was more prominent in CIC-deficient CRC cells, when compared with that observed for ETV1 and ETV5. The enhanced cell proliferative and invasive capabilities in CIC-deficient CRC cells were completely recovered by knockdown of ETV4. CONCLUSION: Collectively, the CIC-ETV4 axis is not only a key module that controls CRC progression but also a novel therapeutic and/or diagnostic target for CRC.

6.
Plant Biotechnol J ; 17(6): 1094-1105, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30468023

RESUMO

Plants have recently received a great deal of attention as a means of producing recombinant proteins. Despite this, a limited number of recombinant proteins are currently on the market and, if plants are to be more widely used, a cost-effective and efficient purification method is urgently needed. Although affinity tags are convenient tools for protein purification, the presence of a tag on the recombinant protein is undesirable for many applications. A cost-effective method of purification using an affinity tag and the removal of the tag after purification has been developed. The family 3 cellulose-binding domain (CBM3), which binds to microcrystalline cellulose, served as the affinity tag and the small ubiquitin-related modifier (SUMO) and SUMO-specific protease were used to remove it. This method, together with size-exclusion chromatography, enabled purification of human interleukin-6 (hIL6) with a yield of 18.49 mg/kg fresh weight from leaf extracts of Nicotiana benthamiana following Agrobacterium-mediated transient expression. Plant-produced hIL6 (P-hIL6) contained less than 0.2 EU/µg (0.02 ng/mL) endotoxin. P-hIL6 activated the Janus kinase-signal transducer and activator of transcriptional pathways in human LNCaP cells, and induced expression of IL-21 in activated mouse CD4+ T cells. This approach is thus a powerful method for producing recombinant proteins in plants.


Assuntos
Biotecnologia , Interleucina-6 , Nicotiana , Proteínas Recombinantes , Animais , Biotecnologia/economia , Células Cultivadas , Cromatografia de Afinidade , Humanos , Interleucina-6/genética , Interleucina-6/isolamento & purificação , Interleucina-6/metabolismo , Camundongos , Folhas de Planta/química , Folhas de Planta/genética , Proteínas Recombinantes/economia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Nicotiana/genética
7.
Hepatology ; 67(6): 2287-2301, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29251790

RESUMO

Hepatocellular carcinoma (HCC) is developed by multiple steps accompanying progressive alterations of gene expression, which leads to increased cell proliferation and malignancy. Although environmental factors and intracellular signaling pathways that are critical for HCC progression have been identified, gene expression changes and the related genetic factors contributing to HCC pathogenesis are still insufficiently understood. In this study, we identify a transcriptional repressor, Capicua (CIC), as a suppressor of HCC progression and a potential therapeutic target. Expression of CIC is posttranscriptionally reduced in HCC cells. CIC levels are correlated with survival rates in patients with HCC. CIC overexpression suppresses HCC cell proliferation and invasion, whereas loss of CIC exerts opposite effects in vivo as well as in vitro. Levels of polyoma enhancer activator 3 (PEA3) group genes, the best-known CIC target genes, are correlated with lethality in patients with HCC. Among the PEA3 group genes, ETS translocation variant 4 (ETV4) is the most significantly up-regulated in CIC-deficient HCC cells, consequently promoting HCC progression. Furthermore, it induces expression of matrix metalloproteinase 1 (MMP1), the MMP gene highly relevant to HCC progression, in HCC cells; and knockdown of MMP1 completely blocks the CIC deficiency-induced HCC cell proliferation and invasion. CONCLUSION: Our study demonstrates that the CIC-ETV4-MMP1 axis is a regulatory module controlling HCC progression. (Hepatology 2018;67:2287-2301).


Assuntos
Proteínas E1A de Adenovirus/fisiologia , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Metaloproteinase 1 da Matriz/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/fisiologia , Animais , Progressão da Doença , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-ets
8.
Nature ; 498(7454): 325-331, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23719381

RESUMO

Many neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS-MAPK-MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacological inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.


Assuntos
Drosophila melanogaster/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/toxicidade , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidade , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Ataxina-1 , Ataxinas , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Drosophila melanogaster/genética , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Terapia de Alvo Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Estabilidade Proteica/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transgenes
9.
J Nanosci Nanotechnol ; 18(6): 4243-4247, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442769

RESUMO

We demonstrate a high-performance photodetector with multilayer tin diselenide (SnSe2) exfoliated from a high-quality crystal which was synthesized by the temperature gradient growth method. This SnSe2 photodetector exhibits high photoresponsivity of 5.11 × 105 A W-1 and high specific detectivity of 2.79 × 1013 Jones under laser irradiation (λ = 450 nm). We also observed a reproducible and stable time-resolved photoresponse to the incident laser beam from this SnSe2 photodetector, which can be used as a promising material for future optoelectronic applications.

10.
Proc Natl Acad Sci U S A ; 112(31): E4246-55, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195740

RESUMO

The homeostatic maintenance of the genomic DNA is crucial for regulating aging processes. However, the role of RNA homeostasis in aging processes remains unknown. RNA helicases are a large family of enzymes that regulate the biogenesis and homeostasis of RNA. However, the functional significance of RNA helicases in aging has not been explored. Here, we report that a large fraction of RNA helicases regulate the lifespan of Caenorhabditis elegans. In particular, we show that a DEAD-box RNA helicase, helicase 1 (HEL-1), promotes longevity by specifically activating the DAF-16/forkhead box O (FOXO) transcription factor signaling pathway. We find that HEL-1 is required for the longevity conferred by reduced insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) and is sufficient for extending lifespan. We further show that the expression of HEL-1 in the intestine and neurons contributes to longevity. HEL-1 enhances the induction of a large fraction of DAF-16 target genes. Thus, the RNA helicase HEL-1 appears to promote longevity in response to decreased IIS as a transcription coregulator of DAF-16. Because HEL-1 and IIS are evolutionarily well conserved, a similar mechanism for longevity regulation via an RNA helicase-dependent regulation of FOXO signaling may operate in mammals, including humans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Longevidade , RNA Helicases/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes de Helmintos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/metabolismo , Dados de Sequência Molecular , Mutação/genética , Neurônios/metabolismo , Ligação Proteica , RNA Helicases/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Reprodução , Análise de Sequência de RNA , Regulação para Cima
11.
Nanotechnology ; 27(22): 225201, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27098430

RESUMO

We investigated the n-type doping effect of hydrazine on the electrical characteristics of a molybdenum disulphide (MoS2)-based field-effect transistor (FET). The threshold voltage of the MoS2 FET shifted towards more negative values (from -20 to -70 V) on treating with 100% hydrazine solution with the channel current increasing from 0.5 to 25 µA at zero gate bias. The inverse subthreshold slope decreased sharply on doping, while the ON/OFF ratio increased by a factor of 100. Gate-channel coupling improved with doping, which facilitates the reduction of channel length between the source and drain electrodes without compromising on the transistor performance, making the MoS2-based FET easily scalable.

12.
PLoS Genet ; 9(3): e1003359, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555280

RESUMO

Hematopoietic stem cells (HSCs) are rare quiescent cells that continuously replenish the cellular components of the peripheral blood. Observing that the ataxia-associated gene Ataxin-1-like (Atxn1L) was highly expressed in HSCs, we examined its role in HSC function through in vitro and in vivo assays. Mice lacking Atxn1L had greater numbers of HSCs that regenerated the blood more quickly than their wild-type counterparts. Molecular analyses indicated Atxn1L null HSCs had gene expression changes that regulate a program consistent with their higher level of proliferation, suggesting that Atxn1L is a novel regulator of HSC quiescence. To determine if additional brain-associated genes were candidates for hematologic regulation, we examined genes encoding proteins from autism- and ataxia-associated protein-protein interaction networks for their representation in hematopoietic cell populations. The interactomes were found to be highly enriched for proteins encoded by genes specifically expressed in HSCs relative to their differentiated progeny. Our data suggest a heretofore unappreciated similarity between regulatory modules in the brain and HSCs, offering a new strategy for novel gene discovery in both systems.


Assuntos
Ataxia , Transtorno Autístico , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas , Proteínas do Tecido Nervoso , Proteínas Nucleares , Animais , Ataxia/genética , Ataxia/metabolismo , Ataxina-1 , Ataxinas , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Estudos de Associação Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Mapas de Interação de Proteínas
13.
Sci Rep ; 14(1): 14900, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942903

RESUMO

Eukaryotic cells can synthesize formyl-methionine (fMet)-containing proteins not only in mitochondria but also in the cytosol to some extent. Our previous study revealed substantial upregulation of N-terminal (Nt)-fMet-containing proteins in the cytosol of SW480 colorectal cancer cells. However, the functional and pathophysiological implications remain unclear. Here, we demonstrated that removal of the Nt-formyl moiety of Nt-fMet-containing proteins (via expressing Escherichia coli PDF peptide deformylase) resulted in a dramatic increase in the proliferation of SW480 colorectal cancer cells. This proliferation coincided with the acquisition of cancer stem cell features, including reduced cell size, enhanced self-renewal capacity, and elevated levels of the cancer stem cell surface marker CD24 and pluripotent transcription factor SOX2. Furthermore, deformylation of Nt-fMet-containing proteins promoted the tumorigenicity of SW480 colorectal cancer cells in an in vivo xenograft mouse model. Taken together, these findings suggest that cytosolic deformylation has a tumor-enhancing effect, highlighting its therapeutic potential for cancer treatment.


Assuntos
Amidoidrolases , Proliferação de Células , Citosol , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Citosol/metabolismo , Camundongos , Linhagem Celular Tumoral , Amidoidrolases/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Antígeno CD24/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Progressão da Doença , Metionina/metabolismo , Metionina/análogos & derivados
14.
Nat Cell Biol ; 26(6): 903-916, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702503

RESUMO

Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias Humanas , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição , Humanos , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Endocitose , Proliferação de Células , Integrinas/metabolismo , Integrinas/genética , Transdução de Sinais , Mecanotransdução Celular
15.
Trends Cell Biol ; 33(12): 1088-1103, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37558595

RESUMO

Ferroptosis is the type of cell death arising from uncontrolled and excessive lipid peroxidation. NADPH is essential for ferroptosis regulation because it supplies reducing equivalents for antioxidant defense systems and contributes to the generation of reactive oxygen species. Moreover, NADPH level serves as a biomarker for predicting the sensitivity of cells to ferroptosis. The ubiquitin-proteasome system governs the stability of many ferroptosis effectors. Recent research has revealed MARCHF6, the endoplasmic reticulum ubiquitin ligase, as an unprecedented NADPH sensor in the ubiquitin system and a critical regulator of ferroptosis involved in tumorigenesis and fetal development. This review summarizes the current understanding of NADPH metabolism and the ubiquitin-proteasome system in regulating ferroptosis and highlights the emerging importance of MARCHF6 as a vital connector between NADPH metabolism and ferroptosis.


Assuntos
Ferroptose , Humanos , Ferroptose/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , NADP/metabolismo , Ubiquitina/metabolismo , Morte Celular , Peroxidação de Lipídeos/fisiologia , Espécies Reativas de Oxigênio/metabolismo
16.
Sci Immunol ; 8(81): eadf2248, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36961907

RESUMO

Communication between CD4 T cells and cognate B cells is key for the former to fully mature into germinal center-T follicular helper (GC-TFH) cells and for the latter to mount a CD4 T cell-dependent humoral immune response. Although this interaction occurs in a B:T synapse-dependent manner, how CD4 T cells transcriptionally regulate B:T synapse formation remains largely unknown. Here, we report that Mef2d, an isoform of the myocyte enhancer factor 2 (Mef2) transcription factor family, is a critical regulator of this process. In CD4 T cells, Mef2d negatively regulates expression of Sh2d1a, which encodes SLAM-associated protein (SAP), a critical regulator of B:T synapses. We found that Mef2d regulates Sh2d1a expression via DNA binding-dependent transcriptional repression, inhibiting SAP-dependent B:T synapse formation and preventing antigen-specific CD4 T cells from differentiating into GC-TFH cells. Mef2d also impeded IL-21 production by CD4 T cells, an important B cell help signaling molecule, via direct repression of the Il21 gene. In contrast, CD4 T cell-specific disruption of Mef2d led to a substantial increase in GC-TFH differentiation in response to protein immunization, concurrent with enhanced SAP expression. MEF2D mRNA expression inversely correlates with human systemic lupus erythematosus (SLE) patient autoimmune parameters, including circulating TFH-like cell frequencies, autoantibodies, and SLEDAI scores. These findings highlight Mef2d as a pivotal rheostat in CD4 T cells for controlling GC formation and antibody production by B cells.


Assuntos
Imunidade Humoral , Linfócitos T Auxiliares-Indutores , Humanos , Fatores de Transcrição/metabolismo , Diferenciação Celular , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo
17.
STAR Protoc ; 3(3): 101526, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35779265

RESUMO

Hematopoietic lineage cell-specific transgenic or knockout mice provide a valuable platform to identify the role of specific genes in hematopoiesis in vivo. Here, we describe protocols for preparation of retroviruses for overexpression or knockdown of a gene of interest, retroviral transduction of fetal liver cells, and generation of hematopoietic lineage cell-specific chimeric mice by transfer of the retrovirus-transduced fetal liver cells. This protocol is applicable for the study of in vivo functionality of a gene of interest in immune cells. For complete details on the use and execution of this protocol, please refer to Chang et al. (2013), Lee et al. (2016), and Hong et al. (2022).


Assuntos
Células-Tronco Hematopoéticas , Retroviridae , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Fígado , Camundongos , Camundongos Knockout , Retroviridae/genética
18.
Front Mol Biosci ; 9: 1030725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619173

RESUMO

Activation of receptor tyrosine kinase signaling inactivates capicua (CIC), a transcriptional repressor that functions as a tumor suppressor, via degradation and/or cytoplasmic translocation. Although CIC is known to be inactivated by phosphorylation, the mechanisms underlying the cytoplasmic translocation of CIC remain poorly understood. Therefore, we aimed to evaluate the roles of extracellular signal-regulated kinase (ERK), p90RSK, and c-SRC in the epidermal growth factor receptor (EGFR) activation-induced cytoplasmic translocation of CIC and further investigated the molecular basis for this process. We found that nuclear ERK induced the cytoplasmic translocation of CIC-S. We identified 12 serine and threonine (S/T) residues within CIC, including S173 and S301 residues that are phosphorylated by p90RSK, which contribute to the cytoplasmic translocation of CIC-S when phosphorylated. The amino-terminal (CIC-S-N) and carboxyl-terminal (CIC-S-C) regions of CIC-S were found to interact with each other to promote their nuclear localization. EGF treatment disrupted the interaction between CIC-S-N and CIC-S-C and induced their cytoplasmic translocation. Alanine substitution for the 12 S/T residues blocked the cytoplasmic translocation of CIC-S and consequently enhanced the tumor suppressor activity of CIC-S. Our study demonstrates that ERK-mediated disruption of intramolecular interaction of CIC is critical for the cytoplasmic translocation of CIC, and suggests that the nuclear retention of CIC may represent a strategy for cancer therapy.

19.
Nat Cell Biol ; 24(8): 1239-1251, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941365

RESUMO

Ferroptosis is a unique form of cell death caused by excessive iron-dependent lipid peroxidation. The level of the anabolic reductant NADPH is a biomarker of ferroptosis sensitivity. However, specific regulators that detect cellular NADPH levels, thereby modulating downstream ferroptosis cascades, are largely unknown. We show here that the transmembrane endoplasmic reticulum MARCHF6 E3 ubiquitin ligase recognizes NADPH through its C-terminal regulatory region. This interaction upregulates the E3 ligase activity of MARCHF6, thus downregulating ferroptosis. We also found that MARCHF6 mediates the degradation of the key ferroptosis effectors ACSL4 and p53. Furthermore, inhibiting ferroptosis rescued the growth of MARCHF6-deficient tumours and peri-natal lethality of Marchf6-/- mice. Together, these findings identify MARCHF6 as a previously unknown NADPH sensor in the ubiquitin system and a crucial regulator of ferroptosis.


Assuntos
Ferroptose , Animais , Morte Celular , Ferroptose/genética , Peroxidação de Lipídeos/fisiologia , Camundongos , NADP/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Cell Rep ; 38(7): 110386, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172136

RESUMO

B-1 cell development mainly occurs via fetal and neonatal hematopoiesis and is suppressed in adult bone marrow hematopoiesis. However, little is known about the factors inhibiting B-1 cell development at the adult stage. We report that capicua (CIC) suppresses postnatal B-1a cell development and survival. CIC levels are high in B-1a cells and gradually increase in transitional B-1a (TrB-1a) cells with age. B-cell-specific Cic-null mice exhibit expansion of the B-1a cell population and a gradual increase in TrB-1a cell frequency with age but attenuated B-2 cell development. CIC deficiency enhances B cell receptor (BCR) signaling in transitional B cells and B-1a cell viability. Mechanistically, CIC-deficiency-mediated Per2 derepression upregulates Bhlhe41 levels by inhibiting CRY-mediated transcriptional repression for Bhlhe41, consequently promoting B-1a cell formation in Cic-null mice. Taken together, CIC is a key transcription factor that limits the B-1a cell population at the adult stage and balances B-1 versus B-2 cell formation.


Assuntos
Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Apoptose , Sequência de Bases , Medula Óssea/embriologia , Diferenciação Celular , Sobrevivência Celular , Criança , Pré-Escolar , Feto/embriologia , Células HEK293 , Humanos , Fígado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células NIH 3T3 , Receptores de Antígenos de Linfócitos B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA