Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Biol Sci ; 288(1953): 20210464, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34157876

RESUMO

The biological pump is crucial for transporting nutrients fixed by surface-dwelling primary producers to demersal animal communities. Indeed, the establishment of an efficient biological pump was likely a key factor enabling the diversification of animals over 500 Myr ago during the Cambrian explosion. The modern biological pump operates through two main vectors: the passive sinking of aggregates of organic matter, and the active vertical migration of animals. The coevolution of eukaryotes and sinking aggregates is well understood for the Proterozoic and Cambrian; however, little attention has been paid to the establishment of the vertical migration of animals. Here we investigate the morphological variation and hydrodynamic performance of the Cambrian euarthropod Isoxys. We combine elliptical Fourier analysis of carapace shape with computational fluid dynamics simulations to demonstrate that Isoxys species likely occupied a variety of niches in Cambrian oceans, including vertical migrants, providing the first quantitative evidence that some Cambrian animals were adapted for vertical movement in the water column. Vertical migration was one of several early Cambrian metazoan innovations that led to the biological pump taking on a modern-style architecture over 500 Myr ago.


Assuntos
Evolução Biológica , Fósseis , Animais , Proteínas de Membrana Transportadoras , Oceanos e Mares
2.
BMC Evol Biol ; 16: 72, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056633

RESUMO

BACKGROUND: Paleozoic scorpions (Arachnida: Scorpiones) have been widely documented from the Carboniferous Period; which hosts a remarkable assemblage of more than sixty species including both putative stem- and crown-group fossils. By contrast the succeeding Permian Period is almost completely devoid of records, which are currently restricted to a trace fossil from the early Permian of New Mexico, USA and some limb fragments from the late Permian of the Vologda Region, Russia. RESULTS: ?Opsieobuthus tungeri sp. nov. from the Petrified Forest of Chemnitz, Germany represents the first complete body fossils of scorpions from the Permian. Explosive volcanism preserved these remarkable specimens in situ as part of the palaeosol horizon and bedrock of the Petrified Forest, immediately beneath the Zeisigwald tuff horizon. This dates to the early Permian (Sakmarian) or ca. 291 Ma. Intriguingly, the specimens were obtained from a palaeosol horizon with a compacted network of different-sized woody roots and thus have been preserved in situ in their likely life position, even within their original burrows. Differences in the structure of the comb-like pectines in the two fossils offer evidence for sexual dimorphism, and permit further inferences about the ecology and perhaps even the reproductive biology of these animals. CONCLUSIONS: As putative members of a Coal Measures genus, these fossils suggest that at least some Carboniferous scorpion lineages extended their range further into the Permian. This contributes towards a picture of scorpion evolution in which both basal and derived (orthostern) forms coexisted for quite some time; probably from the end of the Carboniferous through to at least the mid Triassic.


Assuntos
Evolução Biológica , Escorpiões/anatomia & histologia , Escorpiões/genética , Animais , Ecologia , Florestas , Fósseis , Alemanha , Escorpiões/classificação , Escorpiões/fisiologia
3.
Naturwissenschaften ; 103(3-4): 21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26922777

RESUMO

Enosiaspis hrungnir gen. et sp. nov., a new species of marrellomorph arthropod from the Lower Ordovician (Tremadocian) Fezouata biota of Morocco, is described. This taxon is characterised by the possession of a cordiform dorsal carapace with an anterior notch and a doublure-like structure formed from fused marginal spines, covering the entire body. The head comprises at least five segments which bear an anterior pair of antenna, followed by three pairs of potentially biramous, geniculate appendages. The trunk possesses around 25 pairs of delicate, almost filamentous appendages, which decrease in size posteriorly. Similar features are also found in Xylokorys chledophilia from the Silurian of England, and Vachonisia rogeri from the Devonian of Germany, indicating acercostracan affinities for E. hrungnir. This was tested using a phylogenetic analysis which resolved this taxon as sister taxon to a group composed of the formerly mentioned taxa. The similarities between the ventral spinose carapace doublure of E. hrungnir and the mediolateral spines of marrellid marrellomorphs further support claims that the dorsal shield of acercostracans evolved from the fusion of spinose anlagen, akin to the formation of the carapace of crustaceans.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/classificação , Fósseis , Filogenia , Animais , Marrocos , Especificidade da Espécie
4.
Naturwissenschaften ; 101(12): 1065-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25296691

RESUMO

The morphology of the arthropod Sanctacaris uncata, from the Middle Cambrian Burgess Shale of Canada, is reinterpreted based on a restudy of previously described material. Although originally considered a chelicerate-like arthropod, these affinities were dismissed based primarily on interpretations of the anterior appendages and hypotheses which considered the megacheirans ('great-appendage' arthropods) as putative ancestors of chelicerates. The similarities between megacheirans and chelicerates appear to be overstated however, and this study instead reaffirms the identity of putative chelicerate feature in S. uncata and similar arthropods such as Sidneyia and Emeraldella, both also from the Middle Cambrian Burgess Shale. Newly interpreted features, including the presence of pediform exites, multi-partite trunk exopods, and a trunk differentiated into an anterior limb-bearing area and a differentiated posterior limbless abdomen, were coded into an extensive phylogenetic data set of fossil and recent arthropods. In all analyses, Sanctacaris resolved as the basal-most member of total-group Euchelicerata (the least inclusive group including horseshoe crabs and arachnids but not pycnogonids), thus making it the oldest chelicerate in the fossil record. The vicissicaudates (including Sidneyia, Emeraldella, aglaspidids, and cheloniellids--all of which have previously been allied to chelicerates) resolved as sister-taxon to crown-group Chelicerata. This topology indicates that many purported chelicerate features, such as lamellar gills, and a differentiated posterior abdomen evolved sequentially in the chelicerate stem-lineage.


Assuntos
Artrópodes/classificação , Fósseis , Filogenia , Animais , Artrópodes/anatomia & histologia , Canadá
5.
Cladistics ; 29(1): 15-45, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34814371

RESUMO

The phylogenetic position of aglaspidids, a problematic group of Lower Palaeozoic arthropods of undetermined affinities, is re-examined in the context of the major Cambrian and Ordovician lamellipedian arthropod groups. A cladistic analysis of ten genera of aglaspidids sensu stricto, six aglaspidid-like arthropods and 42 Palaeozoic arthropod taxa indicates that Xenopoda, Cheloniellida, Aglaspidida sensu lato and Trilobitomorpha form a clade (Artiopoda Hou and Bergström, 1997) nested within the mandibulate stem-lineage, thus discarding previous interpretations of these taxa as part 'of the chelicerate stem-group (Arachnomorpha Heider, 1913). The results confirm an aglaspidid identity for several recently described arthropods, including Quasimodaspis brentsae, Tremaglaspis unite, Chlupacaris dubia, Australaglaspis stonyensis and an unnamed Ordovician Chinese arthropod. The problematic Bohemian arthropod Kodymirus vagans was recovered as sister taxon to Beckwithia typa, and both form a small clade that falls outside Aglaspidida sensu stricto, thus discarding eurypterid affinities for the former. The analysis does not support the phylogenetic position of Kwanyinaspis maotianshanensis at the base of Conciliterga as proposed in recent studies, but rather occupies a basal position within Aglaspidida sensu lato. The results indicate a close association of aglaspidid arthropods with xenopods (i.e. Emeraldella and Sidneyia) and cheloniellids (e.g. Cheloniellon, Duslia); the new clade "Vicissicaudata" is proposed to encompass these arthropods, which are characterized by a differentiated posterior region. The phylogenetic position of aglaspidid arthropods makes them good outgroup candidates for analysing the internal relationships within the groups that form Trilobitomorpha. This work provides a much clearer picture of the phylogenetic relationships among Lower Palaeozoic lamellipedians.

6.
Proc Biol Sci ; 279(1748): 4699-704, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23055069

RESUMO

Extant arthropods are diverse and ubiquitous, forming a major constituent of most modern ecosystems. Evidence from early Palaeozoic Konservat Lagerstätten indicates that this has been the case since the Cambrian. Despite this, the details of arthropod origins remain obscure, although most hypotheses regard the first arthropods as benthic predators or scavengers such as the fuxianhuiids or megacheirans ('great-appendage' arthropods). Here, we describe a new arthropod from the Tulip Beds locality of the Burgess Shale Formation (Cambrian, series 3, stage 5) that possesses a weakly sclerotized thorax with filamentous appendages, encased in a bivalved carapace, and a strongly sclerotized, elongate abdomen and telson. A cladistic analysis resolved this taxon as the basal-most member of a paraphyletic grade of nekto-benthic forms with bivalved carapaces. This grade occurs at the base of Arthropoda (panarthropods with arthropodized trunk limbs) and suggests that arthrodization (sclerotization and jointing of the exoskeleton) evolved to facilitate swimming. Predatory and fully benthic habits evolved later in the euarthropod stem-lineage and are plesiomorphically retained in pycnogonids (sea spiders) and euchelicerates (horseshoe crabs and arachnids).


Assuntos
Artrópodes/anatomia & histologia , Evolução Biológica , Bivalves/anatomia & histologia , Fósseis , Abdome , Animais , Artrópodes/fisiologia , Bivalves/fisiologia , Paleontologia/métodos , Tórax
8.
Philos Trans R Soc Lond B Biol Sci ; 377(1847): 20210034, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35125000

RESUMO

Biramous appendages are a common feature among modern marine arthropods that evolved deep in arthropod phylogeny. The branched appendage of Cambrian arthropods has long been considered as the ancient biramous limb, sparking numerous investigations on its origin and evolution. Here, we report a new arthropod, Erratus sperare gen. et sp. nov., from the Lower Cambrian (Stage 3, 520 Ma) Chengjiang biota of Yunnan, China, with unique trunk appendages formed of lateral anomalocaridid-type flaps and ventral subconical endopods. These appendages represent an intermediate stage of biramous limb evolution, i.e. from 'two pairs of flap appendages' in radiodonts to 'flap + endopod' in Erratus, to 'exopod + endopod' in the rest of carapace-bearing arthropods that populate the basal region of the upper-stem lineage arthropods (deuteropods). The new species occupies a phylogenetic position at the first node closer to deuteropods than to radiodonts, and therefore pinpoints the earliest occurrence of the endopod within Deuteropoda. The primitive endopod is weakly sclerotized, and has unspecialized segments without endites or claw. The findings might support previous claims that the outer branch of the biramous limb of fossil marine arthropods, such as trilobites, is not a true exopod, but is instead a modified exite. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.


Assuntos
Artrópodes , Exoesqueleto , Animais , Evolução Biológica , China , Fósseis , Filogenia
9.
Genome Biol Evol ; 11(8): 2055-2070, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31270537

RESUMO

The relationships of crustaceans and hexapods (Pancrustacea) have been much discussed and partially elucidated following the emergence of phylogenomic data sets. However, major uncertainties still remain regarding the position of iconic taxa such as Branchiopoda, Copepoda, Remipedia, and Cephalocarida, and the sister group relationship of hexapods. We assembled the most taxon-rich phylogenomic pancrustacean data set to date and analyzed it using a variety of methodological approaches. We prioritized low levels of missing data and found that some clades were consistently recovered independently of the analytical approach used. These include, for example, Oligostraca and Altocrustacea. Substantial support was also found for Allotriocarida, with Remipedia as the sister of Hexapoda (i.e., Labiocarida), and Branchiopoda as the sister of Labiocarida, a clade that we name Athalassocarida (="nonmarine shrimps"). Within Allotriocarida, Cephalocarida was found as the sister of Athalassocarida. Finally, moderate support was found for Hexanauplia (Copepoda as sister to Thecostraca) in alliance with Malacostraca. Mapping key crustacean tagmosis patterns and developmental characters across the revised phylogeny suggests that the ancestral pancrustacean was relatively short-bodied, with extreme body elongation and anamorphic development emerging later in pancrustacean evolution.


Assuntos
Crustáceos/classificação , Crustáceos/genética , Evolução Molecular , Genoma de Inseto , Genômica/métodos , Proteínas de Insetos/genética , Animais , Regulação da Expressão Gênica , Filogenia , Transcriptoma
10.
Arthropod Struct Dev ; 47(5): 552-561, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30125735

RESUMO

Material attributed to Liangwangshania biloba, a fuxianhuiid arthropod from the lower Cambrian (Series 2, Stage 3) of southwest China, is redescribed, with many specimens illustrated for the first time. Newly recognized features include, potential optical neuropils, a stout posterolateral carapace spine, serrated tergal pleurae, two rows of mediolateral carinae, an abdomen composed of seven segments, the last possessing a tripartite lateral flap, and a triangular telson. The presence of tergal carinae, a prothorax composed of six segments, and a trunk composed of 43 segments tipped with a flap-like terminal segment, increase similarities with the previously described Shankouia zhenghei, thus prompting a reevaluation of the potential synonymy of these taxa. These previously recognized species also show considerable overlap in body size, and the ratios of selected body features, such as the carapace. This, combined with their co-occurrence over a temporally and geographically limited range, further support their synonymy. L. biloba is considered the senior synonym in accordance with ICZN rulings, with morphological differences, specifically the presence of posterolateral spines on the carapace, serrated tergopleurae, and spines on the terminal abdominal segment, attributed to sexual variation. An evaluation of potential sexual dimorphism in other fuxianhuiids, and a reassessment of terminology applied to this group is also provided.


Assuntos
Artrópodes/anatomia & histologia , Caracteres Sexuais , Animais , Artrópodes/classificação
11.
Nat Commun ; 9(1): 470, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391458

RESUMO

Euarthropods owe their evolutionary and ecological success to the morphological plasticity of their appendages. Although this variability is partly expressed in the specialization of the protopodite for a feeding function in the post-deutocerebral limbs, the origin of the former structure among Cambrian representatives remains uncertain. Here, we describe Alacaris mirabilis gen. et sp. nov. from the early Cambrian Xiaoshiba Lagerstätte in China, which reveals the proximal organization of fuxianhuiid appendages in exceptional detail. Proximally, the post-deutocerebral limbs possess an antero-posteriorly compressed protopodite with robust spines. The protopodite is attached to an endopod with more than a dozen podomeres, and an oval flap-shaped exopod. The gnathal edges of the protopodites form an axial food groove along the ventral side of the body, indicating a predatory/scavenging autecology. A cladistic analysis indicates that the fuxianhuiid protopodite represents the phylogenetically earliest occurrence of substantial proximal differentiation within stem-group Euarthropoda illuminating the origin of gnathobasic feeding.


Assuntos
Artrópodes/anatomia & histologia , Evolução Biológica , Extremidades/anatomia & histologia , Animais , China , Fósseis , Filogenia
12.
Nat Commun ; 4: 2485, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24077329

RESUMO

The relationships of major arthropod clades have long been contentious, but refinements in molecular phylogenetics underpin an emerging consensus. Nevertheless, molecular phylogenies have recovered topologies that morphological phylogenies have not, including the placement of hexapods within a paraphyletic Crustacea, and an alliance between myriapods and chelicerates. Here we show enhanced congruence between molecular and morphological phylogenies based on 753 morphological characters for 309 fossil and Recent panarthropods. We resolve hexapods within Crustacea, with remipedes as their closest extant relatives, and show that the traditionally close relationship between myriapods and hexapods is an artefact of convergent character acquisition during terrestrialisation. The inclusion of fossil morphology mitigates long-branch artefacts as exemplified by pycnogonids: when fossils are included, they resolve with euchelicerates rather than as a sister taxon to all other euarthropods.


Assuntos
Artrópodes/classificação , Fósseis , Filogenia , Animais , Artrópodes/anatomia & histologia , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA