Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nucleic Acids Res ; 43(17): 8392-404, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26264663

RESUMO

A plethora of stresses trigger a rapid downregulation of protein synthesis. However, a fraction of mRNAs continue to be recruited onto polysomes and their protein products play a key role in deciding cell fate. These transcripts are characterized by the presence of uORFs within their 5' TL coupling protein expression to reinitiation. The translational brake arises due to the activation of a family of kinases targeting the α subunit of the trimolecular eIF2(αßγ) initiation factor. Phosphorylation of eIF2αSer51 inhibits ternary complex regeneration reducing the pool of 43S ribosomes. It is popular to mimic this event, and hence the integrated stress response (ISR), by the expression of the phosphomimetic eIF2αS51D. However, we report that whereas the ISR is reproduced by eIF2αS51D expression in human HEK293T cells this is not the case in N2a mouse neuroblastoma cells. With regards to translational downregulation, this arises due to the failure of the phosphomimetic protein to assemble an eIF2 complex with endogenous eIF2ß/γ. This can be compensated for by the transient co-expression of all three subunits. Curiously, these conditions do not modulate reinitiation and consequently fail to trigger the ISR. This is the first demonstration that the inhibitory and reinitiation functions of eIF2αS/D can be separated.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Estresse Fisiológico/genética , Animais , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/química , Células HEK293 , Humanos , Camundongos , Fosforilação , Subunidades Proteicas/metabolismo
2.
J Pharmacol Exp Ther ; 355(2): 308-28, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26330537

RESUMO

Cyclooxygenase-2 (COX-2) is an essential regulator of cancer promotion and progression. Extensive efforts to target this enzyme have been developed to reduce growth of cancer cells for chemopreventive and therapeutic reasons. In this context, cyclooxygenase-2 inhibitors present interesting antitumor effects. However, inhibition of COX-2 by anti-COX-2 compounds such as celecoxib was recently associated with detrimental cardiovascular side effects limiting their clinical use. As many anticancer effects of celecoxib are COX-2 independent, analogs such as 2,5-dimethyl-celecoxib (DMC), which lacks COX-2-inhibitory activity, represent a promising alternative strategy. In this study, we investigated the effect of this molecule on growth of hematologic cancer cell lines (U937, Jurkat, Hel, Raji, and K562). We found that this molecule is able to reduce the growth and induces apoptosis more efficiently than celecoxib in all the leukemic cell lines tested. Cell death was associated with downregulation of Mcl-1 protein expression. We also found that DMC induces endoplasmic reticulum stress, which is associated with a decreased of GRP78 protein expression and an alteration of cell cycle progression at the G1/S transition in U937 cells. Accordingly, typical downregulation of c-Myc and cyclin D1 and an upregulation of p27 were observed. Interestingly, for shorter time points, an alteration of mitotic progression, associated with the downregulation of survivin protein expression was observed. Altogether, our data provide new evidence about the mode of action of this compound on hematologic malignancies.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Antineoplásicos/toxicidade , Apoptose , Cálcio/metabolismo , Celecoxib/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/toxicidade , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Humanos , Leucemia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazóis/toxicidade , Sulfonamidas/toxicidade , Peixe-Zebra
3.
Cancer Treat Res ; 159: 123-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24114478

RESUMO

Over the centuries, plant extracts have been used to treat various diseases. Until now, natural products have played an important role in anticancer therapy as there are more than 500 compounds from terrestrial and marine plants or microorganisms, which have antioxidant, antiproliferative, or antiangiogenic properties and are therefore able to reduce tumor growth. The recent discovery of new natural products has been accelerated by novel technologies (high throughput screening of natural products in plants, animals, marine organisms, and microorganisms). Vincristine, irinotecan, etoposide, and paclitaxel are examples of compounds derived from plants that are used in cancer treatment. Similarly, actinomycin D, mitomycin C, bleomycin, doxorubicin, and L-asparaginase are drugs derived from microorganisms. In this review, we describe the molecular mechanisms of natural compounds with anti-inflammatory and anticancer activities.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Humanos
4.
Cancers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067261

RESUMO

Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.

5.
Cell Death Dis ; 14(9): 630, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749143

RESUMO

Glioblastoma (GBM) is a deadly and the most common primary brain tumor in adults. Due to their regulation of a high number of mRNA transcripts, microRNAs (miRNAs) are key molecules in the control of biological processes and are thereby promising therapeutic targets for GBM patients. In this regard, we recently reported miRNAs as strong modulators of GBM aggressiveness. Here, using an integrative and comprehensive analysis of the TCGA database and the transcriptome of GBM biopsies, we identified three critical and clinically relevant miRNAs for GBM, miR-17-3p, miR-222, and miR-340. In addition, we showed that the combinatorial modulation of three of these miRNAs efficiently inhibited several biological processes in patient-derived GBM cells of all these three GBM subtypes (Mesenchymal, Proneural, Classical), induced cell death, and delayed tumor growth in a mouse tumor model. Finally, in a doxycycline-inducible model, we observed a significant inhibition of GBM stem cell viability and a significant delay of orthotopic tumor growth. Collectively, our results reveal, for the first time, the potential of miR-17-3p, miR-222 and miR-340 multi-targeting as a promising therapeutic strategy for GBM patients.


Assuntos
Glioblastoma , MicroRNAs , Adulto , Humanos , Animais , Camundongos , MicroRNAs/genética , Glioblastoma/genética , Agressão , Biópsia , Morte Celular , Modelos Animais de Doenças
6.
Cancers (Basel) ; 14(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35884580

RESUMO

MicroRNAs represent the most characterized post-transcriptional regulators of gene expression. Their altered expression importantly contributes to the development of a wide range of metabolic and inflammatory diseases but also cancers. Accordingly, a myriad of studies has suggested novel therapeutic approaches aiming at inhibiting or restoring the expression of miRNAs in human diseases. However, the influence of other trans-acting factors, such as long-noncoding RNAs or RNA-Binding-Proteins, which compete, interfere, or cooperate with miRNAs-dependent functions, indicate that this regulatory mechanism is much more complex than initially thought, thus questioning the current models considering individuals regulators. In this review, we discuss the interplay existing between miRNAs and the AU-Rich Element Binding Proteins (AUBPs), HuR and tristetraprolin family members (TTP, BRF1 and BRF2), which importantly control the fate of mRNA and whose alterations have also been associated with the development of a wide range of chronic disorders and cancers. Deciphering the interplay between these proteins and miRNAs represents an important challenge to fully characterize the post-transcriptional regulation of pro-tumorigenic processes and design new and efficient therapeutic approaches.

7.
Biomolecules ; 11(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356673

RESUMO

Cyclooxygenase-2 (COX-2) is an important enzyme involved in prostaglandins biosynthesis from arachidonic acid. COX-2 is frequently overexpressed in human cancers and plays a major tumor promoting function. Accordingly, many efforts have been devoted to efficiently target the catalytic site of this enzyme in cancer cells, by using COX-2 specific inhibitors such as celecoxib. However, despite their potent anti-tumor properties, the myriad of detrimental effects associated to the chronic inhibition of COX-2 in healthy tissues, has considerably limited their use in clinic. In addition, increasing evidence indicate that these anti-cancerous properties are not strictly dependent on the inhibition of the catalytic site. These findings have led to the development of non-active COX-2 inhibitors analogues aiming at preserving the antitumor effects of COX-2 inhibitors without their side effects. Among them, two celecoxib derivatives, 2,5-Dimethyl-Celecoxib and OSU-03012, have been developed and suggested for the treatment of viral (e.g., recently SARS-CoV-2), inflammatory, metabolic diseases and cancers. These molecules display stronger anti-tumor properties than celecoxib and thus may represent promising anti-cancer molecules. In this review, we discuss the impact of these two analogues on cancerous processes but also their potential for cancer treatment alone or in combination with existing approaches.


Assuntos
Antineoplásicos/uso terapêutico , Celecoxib/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Neoplasias/tratamento farmacológico , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Celecoxib/efeitos adversos , Celecoxib/análogos & derivados , Celecoxib/farmacologia , Ciclo Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Humanos , Pirazóis/efeitos adversos , Pirazóis/química , Pirazóis/farmacologia , Sulfonamidas/efeitos adversos , Sulfonamidas/química , Sulfonamidas/farmacologia
8.
Cancers (Basel) ; 13(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885077

RESUMO

The treatment of acute myeloid leukemia (AML) remains a challenge especially among the elderly. The Bcl-2 inhibitor venetoclax recently showed significant survival benefits in AML patients when combined to low-dose cytarabine or azacitidine. Bcl-2 inhibition initiate mitochondrial apoptosis, but also respiration and cellular ATP production in AML. AMP-Activated Protein Kinase (AMPK) is a central energy sensor activated by increased AMP:ATP ratio to restore the cellular energy balance. Unexpectedly, we observed that venetoclax inhibited AMPK activity through caspase-dependent degradation of AMPK subunits in AML cells. On the other hand, genetic models of AMPK invalidation and re-expression suggested that AMPK participated to the early stages of apoptotic response through a negative regulation of multi-domain anti-apoptotic effectors such as Mcl-1 or Bcl-xL. Together our results suggested a new link between AMPK and Bcl-2-dependent mitochondrial apoptosis that participated to the anti-leukemic activity of venetoclax in AML.

9.
World J Gastroenterol ; 26(35): 5223-5247, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32994684

RESUMO

Stress granules (SGs) represent important non-membrane cytoplasmic compartments, involved in cellular adaptation to various stressful conditions (e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain several scaffold proteins and RNA-binding proteins, which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions. Although the role of SGs in cancer development is still poorly known and vary between cancer types, increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance. As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide, development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis. Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies. In this review, we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Colorretais/tratamento farmacológico , Grânulos Citoplasmáticos , Humanos , RNA Mensageiro , Proteínas de Ligação a RNA , Estresse Fisiológico
10.
World J Gastrointest Oncol ; 11(2): 71-90, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30788036

RESUMO

Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called "Adenylate-Uridylate-rich elements binding proteins" (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3'UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.

11.
PLoS One ; 9(7): e102890, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036748

RESUMO

Elk1 belongs to the ternary complex (TCF) subfamily of the ETS-domain transcription factors. Several studies have implicated an important function for Elk1 in the CNS including synaptic plasticity and cell differentiation. Whilst studying ELK1 gene expression in rat brain a 54 aa N-terminally truncated isoform lacking the DBD was observed on immunoblots. A similar protein was also detected in NGF differentiated PC12 cells. It was proposed that this protein, referred to as sElk1, arose due to a de-novo initiation event at the second AUG codon on the Elk1 ORF. Transient over-expression of sElk1 potentiated neurite growth in the PC12 model and induced differentiation in the absence of NGF, leading to the proposition that it may have a specific function in the CNS. Here we report on the translational expression from the mouse and rat transcript and compare it with our earlier published work on human. Results demonstrate that the previously observed sElk1 protein is a non-specific band arising from the antibody employed. The tight conservation of the internal AUG reported to drive sElk1 expression is in fact coupled to Elk1 protein function, a result consistent with the Elk1-SRE crystal structure. It is also supported by the observed conservation of this methionine in the DBD of all ETS transcription factors independent of the N- or C-terminal positioning of this domain. Reporter assays demonstrate that elements both within the 5'UTR and downstream of the AUGElk1 serve to limit 40S access to the AUGsElk1 codon.


Assuntos
Códon/genética , Iniciação Traducional da Cadeia Peptídica/genética , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Células PC12 , Ratos , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA