Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1393-D1399, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953323

RESUMO

Drug resistance is a major barrier in cancer treatment and anticancer drug development. Growing evidence indicates that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in cancer progression, therapy, and drug resistance. Furthermore, ncRNAs have been proven to be promising novel therapeutic targets for cancer treatment. Reversing dysregulated ncRNAs by drugs holds significant potential as an effective therapeutic strategy for overcoming drug resistance. Therefore, we developed ncRNADrug, an integrated and comprehensive resource that records manually curated and computationally predicted ncRNAs associated with drug resistance, ncRNAs targeted by drugs, as well as potential drug combinations for the treatment of resistant cancer. Currently, ncRNADrug collects 29 551 experimentally validated entries involving 9195 ncRNAs (2248 miRNAs, 4145 lncRNAs and 2802 circRNAs) associated with the drug resistance of 266 drugs, and 32 969 entries involving 10 480 ncRNAs (4338 miRNAs, 6087 lncRNAs and 55 circRNAs) targeted by 965 drugs. In addition, ncRNADrug also contains associations between ncRNAs and drugs predicted from ncRNA expression profiles by differential expression analysis. Altogether, ncRNADrug surpasses the existing related databases in both data volume and functionality. It will be a useful resource for drug development and cancer treatment. ncRNADrug is available at http://www.jianglab.cn/ncRNADrug.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Resistência a Medicamentos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Bases de Dados Factuais
2.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499343

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by intra-tumoral heterogeneity, and patients are always diagnosed after metastasis. Thus, finding out how to effectively estimate metastatic risk underlying PDAC is necessary. In this study, we proposed scMetR to evaluate the metastatic risk of tumor cells based on single-cell RNA sequencing (scRNA-seq) data. First, we identified diverse cell types, including tumor cells and other cell types. Next, we grouped tumor cells into three sub-populations according to scMetR score, including metastasis-featuring tumor cells (MFTC), transitional metastatic tumor cells (TransMTC), and conventional tumor cells (ConvTC). We identified metastatic signature genes (MSGs) through comparing MFTC and ConvTC. Functional enrichment analysis showed that up-regulated MSGs were enriched in multiple metastasis-associated pathways. We also found that patients with high expression of up-regulated MSGs had worse prognosis. Spatial mapping of MFTC showed that they are preferentially located in the cancer and duct epithelium region, which was enriched with the ductal cells' associated inflammation. Further, we inferred cell-cell interactions, and observed that interactions of the ADGRE5 signaling pathway, which is associated with metastasis, were increased in MFTC compared to other tumor sub-populations. Finally, we predicted 12 candidate drugs that had the potential to reverse expression of MSGs. Taken together, we have proposed scMetR to estimate metastatic risk in PDAC patients at single-cell resolution which might facilitate the dissection of tumor heterogeneity.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Regulação Neoplásica da Expressão Gênica , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas
3.
Genes (Basel) ; 14(2)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36833194

RESUMO

Heterogeneity exists inter- and intratumorally, which might lead to different drug responses. Therefore, it is extremely important to clarify the drug response at single-cell resolution. Here, we propose a precise single-cell drug response (scDR) prediction method for single-cell RNA sequencing (scRNA-seq) data. We calculated a drug-response score (DRS) for each cell by integrating drug-response genes (DRGs) and gene expression in scRNA-seq data. Then, scDR was validated through internal and external transcriptomics data from bulk RNA-seq and scRNA-seq of cell lines or patient tissues. In addition, scDR could be used to predict prognoses for BLCA, PAAD, and STAD tumor samples. Next, comparison with the existing method using 53,502 cells from 198 cancer cell lines showed the higher accuracy of scDR. Finally, we identified an intrinsic resistant cell subgroup in melanoma, and explored the possible mechanisms, such as cell cycle activation, by applying scDR to time series scRNA-seq data of dabrafenib treatment. Altogether, scDR was a credible method for drug response prediction at single-cell resolution, and helpful in drug resistant mechanism exploration.


Assuntos
Melanoma , Análise de Célula Única , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , RNA-Seq
4.
Genome Med ; 14(1): 118, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229842

RESUMO

BACKGROUND: Pathway enrichment analysis (PEA) is a common method for exploring functions of hundreds of genes and identifying disease-risk pathways. Moreover, different pathways exert their functions through crosstalk. However, existing PEA methods do not sufficiently integrate essential pathway features, including pathway crosstalk, molecular interactions, and network topologies, resulting in many risk pathways that remain uninvestigated. METHODS: To overcome these limitations, we develop a new crosstalk-based PEA method, CTpathway, based on a global pathway crosstalk map (GPCM) with >440,000 edges by combing pathways from eight resources, transcription factor-gene regulations, and large-scale protein-protein interactions. Integrating gene differential expression and crosstalk effects in GPCM, we assign a risk score to genes in the GPCM and identify risk pathways enriched with the risk genes. RESULTS: Analysis of >8300 expression profiles covering ten cancer tissues and blood samples indicates that CTpathway outperforms the current state-of-the-art methods in identifying risk pathways with higher accuracy, reproducibility, and speed. CTpathway recapitulates known risk pathways and exclusively identifies several previously unreported critical pathways for individual cancer types. CTpathway also outperforms other methods in identifying risk pathways across all cancer stages, including early-stage cancer with a small number of differentially expressed genes. Moreover, the robust design of CTpathway enables researchers to analyze both bulk and single-cell RNA-seq profiles to predict both cancer tissue and cell type-specific risk pathways with higher accuracy. CONCLUSIONS: Collectively, CTpathway is a fast, accurate, and stable pathway enrichment analysis method for cancer research that can be used to identify cancer risk pathways. The CTpathway interactive web server can be accessed here http://www.jianglab.cn/CTpathway/ . The stand-alone program can be accessed here https://github.com/Bioccjw/CTpathway .


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Neoplasias/genética , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA