Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO Rep ; 23(12): e54685, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36215678

RESUMO

Increased lactate levels in the tissue microenvironment are a well-known feature of chronic inflammation. However, the role of lactate in regulating T cell function remains controversial. Here, we demonstrate that extracellular lactate predominantly induces deregulation of the Th17-specific gene expression program by modulating the metabolic and epigenetic status of Th17 cells. Following lactate treatment, Th17 cells significantly reduced their IL-17A production and upregulated Foxp3 expression through ROS-driven IL-2 secretion. Moreover, we observed increased levels of genome-wide histone H3K18 lactylation, a recently described marker for active chromatin in macrophages, in lactate-treated Th17 cells. In addition, we show that high lactate concentrations suppress Th17 pathogenicity during intestinal inflammation in mice. These results indicate that lactate is capable of reprogramming pro-inflammatory T cell phenotypes into regulatory T cells.


Assuntos
Ácido Láctico , Células Th17 , Animais , Camundongos , Epigenômica
2.
Eur J Immunol ; 52(10): 1680-1683, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047738

RESUMO

IRF4 knock-out cells do not differentiate properly into T helper subsets 2, 9, and 17. Compared to WT IRF4 point mutation L116R shows differentially expressed key cytokines. While amounts Th2 and Th17 cells are decreased, there is a strong induction of Th9 cells in cells carrying the L116R mutated IRF4.


Assuntos
Interleucina-9 , Células Th17 , Diferenciação Celular/genética , Citocinas/genética , Citocinas/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferons/genética , Interleucina-9/genética , Interleucina-9/metabolismo , Mutação Puntual , Células Th17/metabolismo , Células Th2/metabolismo
3.
Eur J Immunol ; 52(9): 1523-1526, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35776890

RESUMO

The known YAP inhibitor verteporfin is capable of repressing IL-17A production in Th17 cells. However, this effect is mediated independently of YAP and can ameliorate Th17-mediated experimental autoimmune encephalomyelitis (EAE) upon in vivo administration. The data suggest verteprofin's mode of action for the design of novel therapeutic autoimmune disease intervention.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Verteporfina/farmacologia
4.
Epilepsia ; 64(2): 511-523, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507708

RESUMO

OBJECTIVE: The P2X7 receptor (P2X7R) is an important contributor to neuroinflammation, responding to extracellularly released adenosine triphosphate. Expression of the P2X7R is increased in the brain in experimental and human epilepsy, and genetic or pharmacologic targeting of the receptor can reduce seizure frequency and severity in preclinical models. Experimentally induced seizures also increase levels of the P2X7R in blood. Here, we tested 18 F-JNJ-64413739, a positron emission tomography (PET) P2X7R antagonist, as a potential noninvasive biomarker of seizure-damage and epileptogenesis. METHODS: Status epilepticus was induced via an intra-amygdala microinjection of kainic acid. Static PET studies (30 min duration, initiated 30 min after tracer administration) were conducted 48 h after status epilepticus via an intravenous injection of 18 F-JNJ-64413739. PET images were coregistered with a brain magnetic resonance imaging atlas, tracer uptake was determined in the different brain regions and peripheral organs, and values were correlated to seizure severity during status epilepticus. 18 F-JNJ-64413739 was also applied to ex vivo human brain slices obtained following surgical resection for intractable temporal lobe epilepsy. RESULTS: P2X7R radiotracer uptake correlated strongly with seizure severity during status epilepticus in brain structures including the cerebellum and ipsi- and contralateral cortex, hippocampus, striatum, and thalamus. In addition, a correlation between radiotracer uptake and seizure severity was also evident in peripheral organs such as the heart and the liver. Finally, P2X7R radiotracer uptake was found elevated in brain sections from patients with temporal lobe epilepsy when compared to control. SIGNIFICANCE: Taken together, our data suggest that P2X7R-based PET imaging may help to identify seizure-induced neuropathology and temporal lobe epilepsy patients with increased P2X7R levels possibly benefitting from P2X7R-based treatments.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Camundongos , Humanos , Masculino , Animais , Epilepsia do Lobo Temporal/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/metabolismo , Convulsões/tratamento farmacológico
5.
Eur J Immunol ; 50(2): 292-294, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724737

RESUMO

Mice lacking CD4+ T cells or B cells are highly susceptible to Citrobacter rodentium infection. In this study, we show that the activity of the transcription factor c-Rel in lymphocytes is crucial for clearance of C. rodentium. Mice deficient for c-Rel fail to generate protective antibodies and to eradicate the pathogen.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-rel/imunologia , Transcrição Gênica/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Camundongos
6.
Mucosal Immunol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39265892

RESUMO

The host-microbiome axis has been implicated in promoting anti-inflammatory immune responses. Yet, the underlying molecular mechanisms of commensal-mediated IL-10 production by regulatory B cells (Bregs) are not fully elucidated. Here, we demonstrate that bacterial CpG motifs trigger the signaling downstream of TLR9 promoting IκBNS-mediated expression of Blimp-1, a transcription regulator of IL-10. Surprisingly, this effect was counteracted by the NF-κB transcription factor c-Rel. A functional screen for intestinal bacterial species identified the commensal Clostridium sporogenes, secreting high amounts of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs), as an amplifier of IL-10 production by promoting sustained mTOR signaling in B cells. Consequently, enhanced Breg functionality was achieved by combining CpG with the SCFA butyrate or the BCFA isovalerate thereby synergizing TLR- and mTOR-mediated pathways. Collectively, Bregs required two bacterial signals (butyrate and CpG) to elicit their full suppressive capacity and ameliorate T cell-mediated intestinal inflammation. Our study has dissected the molecular pathways induced by bacterial factors, which might contribute not only to better understanding of host-microbiome interactions, but also to exploration of new strategies for improvement of anti-inflammatory cellular therapy.

7.
Brain Commun ; 6(1): fcae017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317856

RESUMO

The immunoproteasome is a central protease complex required for optimal antigen presentation. Immunoproteasome activity is also associated with facilitating the degradation of misfolded and oxidized proteins, which prevents cellular stress. While extensively studied during diseases with increasing evidence suggesting a role for the immunoproteasome during pathological conditions including neurodegenerative diseases, this enzyme complex is believed to be mainly not expressed in the healthy brain. In this study, we show an age-dependent increase in polyubiquitination in the brains of wild-type mice, accompanied by an induction of immunoproteasomes, which was most prominent in neurons and microglia. In contrast, mice completely lacking immunoproteasomes (triple-knockout mice), displayed a strong increase in polyubiquitinated proteins already in the young brain and developed spontaneous epileptic seizures, beginning at the age of 6 months. Injections of kainic acid led to high epilepsy-related mortality of aged triple-knockout mice, confirming increased pathological hyperexcitability states. Notably, the expression of the immunoproteasome was reduced in the brains of patients suffering from epilepsy. In addition, the aged triple-knockout mice showed increased anxiety, tau hyperphosphorylation and degeneration of Purkinje cell population with the resulting ataxic symptoms and locomotion alterations. Collectively, our study suggests a critical role for the immunoproteasome in the maintenance of a healthy brain during ageing.

8.
Gut Microbes ; 16(1): 2412669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39397690

RESUMO

Gut microbiota-derived metabolites play a pivotal role in the maintenance of intestinal immune homeostasis. Here, we demonstrate that the human commensal Clostridium sporogenes possesses a specific metabolic fingerprint, consisting predominantly of the tryptophan catabolite indole-3-propionic acid (IPA), the branched-chain acids (BCFAs) isobutyrate and isovalerate and the short-chain fatty acids (SCFAs) acetate and propionate. Mono-colonization of germ-free mice with C. sporogenes (CS mice) affected colonic mucosal immune cell phenotypes, including up-regulation of Il22 gene expression, and increased abundance of transcriptionally active colonic tuft cells and Foxp3+ regulatory T cells (Tregs). In DSS-induced colitis, conventional mice suffered severe inflammation accompanied by loss of colonic crypts. These symptoms were absent in CS mice. In conventional, but not CS mice, bulk RNAseq analysis of the colon revealed an increase in inflammatory and Th17-related gene signatures. C. sporogenes-derived IPA reduced IL-17A protein expression by suppressing mTOR activity and by altering ribosome-related pathways in Th17 cells. Additionally, BCFAs and SCFAs generated by C. sporogenes enhanced the activity of Tregs and increased the production of IL-22, which led to protection from colitis. Collectively, we identified C. sporogenes as a therapeutically relevant probiotic bacterium that might be employed in patients with inflammatory bowel disease (IBD).


Assuntos
Clostridium , Colite , Colo , Microbioma Gastrointestinal , Interleucina 22 , Linfócitos T Reguladores , Células Th17 , Animais , Camundongos , Clostridium/metabolismo , Colite/microbiologia , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Colo/microbiologia , Colo/imunologia , Colo/metabolismo , Camundongos Endogâmicos C57BL , Interleucinas/metabolismo , Interleucinas/genética , Humanos , Sulfato de Dextrana , Interleucina-17/metabolismo , Ácidos Graxos Voláteis/metabolismo
9.
Arch Immunol Ther Exp (Warsz) ; 70(1): 5, 2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35064840

RESUMO

The participation of proteasomes in vital cellular and metabolic processes that are involved in tumor growth has made this protease complex an attractive target for cancer treatment. In contrast to ubiquitously available constitutive proteasome, the increased enzymatic activity of immunoproteasome is associated with tumor-infiltrating immune cells, such as antigen-presenting cells and T lymphocytes. In various tumors, an effective anti-tumor immunity is provided through generation of tumor-associated antigens by proteasomes, contributing crucially to cancer eradication by T lymphocytes. The knowledge regarding the role of immunoproteasomes in the communication between tumor cells and infiltrating immune cells is limited. Novel data suggest that the involvement of immunoproteasomes in tumorigenesis is more complex than previously thought. In the intestine, in which diverse signals from commensal bacteria and food can contribute to the onset of chronic inflammation and inflammation-driven cancer, immunoproteasomes exert tumorigenic properties by modulating the expression of pro-inflammatory factors. In contrast, in melanoma and non-small cell lung cancer, the immunoproteasome acts against cancer development by promoting an effective anti-tumor immunity. In this review, we highlight the potential of immunoproteasomes to either contribute to inflammatory signaling and tumor development, or to support anti-cancer immunity. Further, we discuss novel therapeutic options for cancer treatments that are associated with modulating the activity of immunoproteasomes in the tumor microenvironment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias do Colo , Neoplasias Pulmonares , Melanoma , Comunicação Celular , Humanos , Complexo de Endopeptidases do Proteassoma , Microambiente Tumoral
10.
Microbiome ; 10(1): 158, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171625

RESUMO

BACKGROUND: The intestinal microbiota fundamentally guides the development of a normal intestinal physiology, the education, and functioning of the mucosal immune system. The Citrobacter rodentium-carrier model in germ-free (GF) mice is suitable to study the influence of selected microbes on an otherwise blunted immune response in the absence of intestinal commensals. RESULTS: Here, we describe that colonization of adult carrier mice with 14 selected commensal microbes (OMM12 + MC2) was sufficient to reestablish the host immune response to enteric pathogens; this conversion was facilitated by maturation and activation of the intestinal blood vessel system and the step- and timewise stimulation of innate and adaptive immunity. While the immature colon of C. rodentium-infected GF mice did not allow sufficient extravasation of neutrophils into the gut lumen, colonization with OMM12 + MC2 commensals initiated the expansion and activation of the visceral vascular system enabling granulocyte transmigration into the gut lumen for effective pathogen elimination. CONCLUSIONS: Consortium modeling revealed that the addition of two facultative anaerobes to the OMM12 community was essential to further progress the intestinal development. Moreover, this study demonstrates the therapeutic value of a defined consortium to promote intestinal maturation and immunity even in adult organisms. Video Abstract.


Assuntos
Citrobacter rodentium , Mucosa Intestinal , Animais , Citrobacter rodentium/fisiologia , Sistema Imunitário , Imunocompetência , Intestinos , Camundongos
11.
Cancer Immunol Res ; 9(6): 682-692, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33707310

RESUMO

Apart from the constitutive proteasome, the immunoproteasome that comprises the three proteolytic subunits LMP2, MECL-1, and LMP7 is expressed in most immune cells. In this study, we describe opposing roles for immunoproteasomes in regulating the tumor microenvironment (TME). During chronic inflammation, immunoproteasomes modulated the expression of protumorigenic cytokines and chemokines and enhanced infiltration of innate immune cells, thus triggering the onset of colitis-associated carcinogenesis (CAC) in wild-type mice. Consequently, immunoproteasome-deficient animals (LMP2/MECL-1/LMP7-null mice) were almost completely resistant to CAC development. In patients with ulcerative colitis with high risk for CAC, immunoproteasome-induced protumorigenic mediators were upregulated. In melanoma tumors, the role of immunoproteasomes is relatively unknown. We found that high expression of immunoproteasomes in human melanoma was associated with better prognosis. Similarly, our data revealed that the immunoproteasome has antitumorigenic activity in a mouse model of melanoma. The antitumor immunity against melanoma was compromised in immunoproteasome-deficient mice because of the impaired activity of CD8+ CTLs, CD4+ Th1 cells, and antigen-presenting cells. These findings show that immunoproteasomes may exert opposing roles with either pro- or antitumoral properties in a context-dependent manner.


Assuntos
Cisteína Endopeptidases/metabolismo , Melanoma Experimental/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Colite/patologia , Cisteína Endopeptidases/deficiência , Cisteína Endopeptidases/genética , Citocinas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/genética , Linfócitos T Citotóxicos/metabolismo
12.
Nat Commun ; 12(1): 4077, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210970

RESUMO

Emerging data demonstrate that the activity of immune cells can be modulated by microbial molecules. Here, we show that the short-chain fatty acids (SCFAs) pentanoate and butyrate enhance the anti-tumor activity of cytotoxic T lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells through metabolic and epigenetic reprograming. We show that in vitro treatment of CTLs and CAR T cells with pentanoate and butyrate increases the function of mTOR as a central cellular metabolic sensor, and inhibits class I histone deacetylase activity. This reprogramming results in elevated production of effector molecules such as CD25, IFN-γ and TNF-α, and significantly enhances the anti-tumor activity of antigen-specific CTLs and ROR1-targeting CAR T cells in syngeneic murine melanoma and pancreatic cancer models. Our data shed light onto microbial molecules that may be used for enhancing cellular anti-tumor immunity. Collectively, we identify pentanoate and butyrate as two SCFAs with therapeutic utility in the context of cellular cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fatores Imunológicos/metabolismo , Imunoterapia Adotiva/métodos , Microbiota/fisiologia , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Butiratos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Imunoterapia , Interferon gama , Subunidade alfa de Receptor de Interleucina-2 , Megasphaera , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Receptores Acoplados a Proteínas G/genética , Fator de Necrose Tumoral alfa
13.
Sci Rep ; 8(1): 14430, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258117

RESUMO

The gut microbiota produces metabolites such as short-chain fatty acids (SCFAs) that regulate the energy homeostasis and impact on immune cell function of the host. Recently, innovative approaches based on the oral administration of SCFAs have been discussed for therapeutic modification of inflammatory immune responses in autoimmune diseases. So far, most studies have investigated the SCFA-mediated effects on CD4+ T cells and antigen presenting cells. Here we show that butyrate and, to a lesser degree, propionate directly modulate the gene expression of CD8+ cytotoxic T lymphocytes (CTLs) and Tc17 cells. Increased IFN-γ and granzyme B expression by CTLs as well as the molecular switch of Tc17 cells towards the CTL phenotype was mediated by butyrate independently of its interaction with specific SCFA-receptors GPR41 and GPR43. Our results indicate that butyrate strongly inhibited histone-deacetylases (HDACs) in CD8+ T cells thereby affecting the gene expression of effector molecules. Accordingly, the pan-HDAC inhibitors trichostatin A (TSA) and sodium valproate exerted similar influence on CD8+ T cells. Furthermore, higher acetate concentrations were also able to increase IFN-γ production in CD8+ T lymphocytes by modulating cellular metabolism and mTOR activity. These findings might have significant implications in adoptive immunotherapy of cancers and in anti-viral immunity.


Assuntos
Butiratos/imunologia , Linfócitos T CD8-Positivos/imunologia , Microbioma Gastrointestinal , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Histona Desacetilases/imunologia , Interferon gama/genética , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Propionatos/imunologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA