Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39123819

RESUMO

In the context of the 17th International Conference on Telecommunications (ConTEL), which took place at Graz University of Technology, Austria, from the 11th until the 13th of July 2023, the chairs of the conference were approached by MDPI to organize a Special Issue as part of the Sensors journal (ISSN: 1424-8220) [...].

2.
Sensors (Basel) ; 22(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080797

RESUMO

This paper presents a novel approach to improving wireless communications in harsh propagation environments to achieve higher overall reliability and durability of wireless battery powered sensor systems in the context of in-vehicle communication. The goal is to investigate the physical layer and establish an antenna recommendation system for a specific harsh environment, i.e., an engine compartment of a vehicle. We propose the usage of electromagnetic (EM) and ray tracing simulations as a computationally cost-effective method to establish such a recommendation system, which we test by means of an experimental testbed-or test environment-that consists of both a physical, as well as its identical simulation, model. A pool of antennas is evaluated to identify and verify antenna behavior and properties at specified positions in the harsh environment. We use a vector network analyzer (VNA) for accurate measurements and a received signal strength indicator (RSSI) for a first estimation of system performance. Our analysis of the experimental measurements and its EM simulation counterparts shows that both types of data lead to equivalent antenna recommendations at each of the defined positions and experimental conditions. This evaluation and verification process by measurements on an experimental testbed is important to validate the antenna recommendation process. Our results indicate that-with properly characterized antennas-such measurements can be substituted with EM simulations on an accurate EM model, which can contribute to dramatically speeding up the antenna positioning and selection process.

3.
Opt Lett ; 46(5): 937-940, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649625

RESUMO

Using ultra-high repetition rate lasers (≥100kHz) is one of the most promising strategies for the next generation of satellite laser ranging (SLR) systems. We present successful 1 MHz repetition rate SLR to targets up to inclined geosynchronous orbits at nighttime. Among those, a maximum return rate of up to 53% was achieved, equivalent to 265 k returns per second for the satellite Swarm-B. In addition, daytime megahertz (MHz) SLR was realized by utilizing a propagated MHz range gate to reduce the massive background noise. In the future, MHz SLR will greatly improve current technology with respect to data amount and data precision, shorter acquisition time, target signature detection, and attitude determination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA