Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Physiol Plant ; 175(4): e13966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37365151

RESUMO

The morphology of somatic embryos (SE) is not a sufficient criterion to determine the level of maturation and the optimal stage to transfer embryos for germination, unlike the biochemical components. This composition characterization in the laboratory is too restrictive to be considered at each maturation cycle, as would be necessary. It is, therefore, essential to consider alternative methods. The objectives of this work were to achieve a complete biochemical characterization of the embryos during their development, to serve as a reference and develop a characterization based on infrared spectrometry and chemometrics. During the precotyledonary stage (0-3 weeks of maturation), water content and glucose and fructose levels were high, which is consistent with SE development. After 4 weeks, the cotyledonary SE had a metabolism oriented towards the storage accumulation of lipids, proteins and starch, whereas raffinose only appeared from 8 weeks. Mid-infrared calibration models were developed for water, proteins, lipids, carbohydrates, glucose, fructose, inositols, raffinose, stachyose and starch contents with an r2 average of 0.84. A model was also developed to discriminate the weeks of SE maturation. Different classes of age were discriminated with at least 72% of accuracy. Infrared analysis of the SE based on their full biochemical spectral fingerprint revealed a very slight variation in composition between 7 and 9 weeks, information that is very difficult to obtain by conventional analysis methods. These results provide novel insights into the maturation of conifer SE and indicate that mid-infrared spectrometry could be an easy and effective method for SE characterization.


Assuntos
Larix , Sementes , Larix/metabolismo , Rafinose/metabolismo , Rafinose/farmacologia , Amido/metabolismo , Glucose/metabolismo , Frutose/metabolismo , Água/metabolismo , Lipídeos
2.
BMC Plant Biol ; 18(1): 164, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097018

RESUMO

BACKGROUND: To explore poorly understood differences between primary and subsequent somatic embryogenic lines of plants, we induced secondary (2ry) and tertiary (3ry) lines from cotyledonary somatic embryos (SEs) of two Douglas-fir genotypes: SD4 and TD17. The 2ry lines exhibited significantly higher embryogenic potential (SE yields) than the 1ry lines initiated from zygotic embryos (SD4, 2155 vs 477; TD17, 240 vs 29 g- 1 f.w.). Moreover, we observed similar differences in yield between 2ry and 3ry lines of SD4 (2400 vs 3921 g- 1 f.w.). To elucidate reasons for differences in embryogenic potential induced by repetitive somatic embryogenesis we then compared 2ry vs 1ry and 2ry vs 3ry lines at histo-cytological (using LC-MS/MS) and proteomic levels. RESULTS: Repetitive somatic embryogenesis dramatically improved the proliferating lines' cellular organization (genotype SD4's most strongly). Frequencies of singulated, bipolar SEs and compact polyembryogenic centers with elongated suspensors and apparently cleavable embryonal heads increased in 2ry and (even more) 3ry lines. Among 2300-2500 identified proteins, 162 and 228 were classified significantly differentially expressed between 2ry vs 1ry and 3ry vs 2ry lines, respectively, with special emphasis on "Proteolysis" and "Catabolic process" Gene Ontology categories. Strikingly, most of the significant proteins (> 70%) were down-regulated in 2ry relative to 1ry lines, but up-regulated in 3ry relative to 2ry lines, revealing a down-up pattern of expression. GO category enrichment analyses highlighted the opposite adjustments of global protein patterns, particularly for processes involved in chitin catabolism, lignin and L-phenylalanine metabolism, phenylpropanoid biosynthesis, oxidation-reduction, and response to karrikin. Sub-Network Enrichment Analyses highlighted interactions between significant proteins and both plant growth regulators and secondary metabolites after first (especially jasmonic acid, flavonoids) and second (especially salicylic acid, abscisic acid, lignin) embryogenesis cycles. Protein networks established after each induction affected the same "Plant development" and "Defense response" biological processes, but most strongly after the third cycle, which could explain the top embryogenic performance of 3ry lines. CONCLUSIONS: This first report of cellular and molecular changes after repetitive somatic embryogenesis in conifers shows that each cycle enhanced the structure and singularization of EMs through modulation of growth regulator pathways, thereby improving the lines' embryogenic status.


Assuntos
Técnicas de Embriogênese Somática de Plantas/métodos , Pseudotsuga/embriologia , Sementes/crescimento & desenvolvimento , Redes Reguladoras de Genes , Espectrometria de Massas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Proteômica , Pseudotsuga/crescimento & desenvolvimento , Pseudotsuga/metabolismo , Sementes/metabolismo
3.
Ann Bot ; 115(4): 605-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25605662

RESUMO

BACKGROUND AND AIMS: In conifers, mature somatic embryos and zygotic embryos appear to resemble one another physiologically and morphologically. However, phenotypes of cloned conifer embryos can be strongly influenced by a number of in vitro factors and in some instances clonal variation can exceed that found in nature. This study examines whether zygotic embryos that develop within light-opaque cones differ from somatic embryos developing in dark/light conditions in vitro. Embryogenesis in larch is well understood both in situ and in vitro and thus provides a suitable system for addressing this question. METHODS: Features of somatic and zygotic embryos of hybrid larch, Larix × marschlinsii, were quantified, including cotyledon numbers, protein concentration and phenol chemistry. Somatic embryos were placed either in light or darkness for the entire maturation period. Embryos at different developmental stages were embedded and sectioned for histological analysis. KEY RESULTS: Light, and to a lesser degree abscisic acid (ABA), influenced accumulation of protein and phenolic compounds in somatic and zygotic embryos. Dark-grown mature somatic embryos had more protein (91·77 ± 11·26 µg protein mg(-1) f.wt) than either dark-grown zygotic embryos (62·40 ± 5·58) or light-grown somatic embryos (58·15 ± 10·02). Zygotic embryos never accumulated phenolic compounds at any stage, whereas somatic embryos stored phenolic compounds in the embryonal root caps and suspensors. Light induced the production of quercetrin (261·13 ± 9·2 µg g(-1) d.wt) in somatic embryos. Mature zygotic embryos that were removed from seeds and placed on medium in light rapidly accumulated phenolics in the embryonal root cap and hypocotyl. Delaying germination with ABA delayed phenolic compound accumulation, restricting it to the embryonal root cap. CONCLUSIONS: In larch embryos, light has a negative effect on protein accumulation, but a positive effect on phenol accumulation. Light did not affect morphogenesis, e.g. cotyledon number. Somatic embryos produced different amounts of phenolics, such as quercetrin, depending on light conditions. The greatest difference was seen in the embryonal root cap in all embryo types and conditions.


Assuntos
Larix/efeitos da radiação , Luz , Pigmentação/efeitos da radiação , Sementes/efeitos da radiação , Ácido Abscísico/farmacologia , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Hibridização Genética , Larix/efeitos dos fármacos , Larix/embriologia , Larix/crescimento & desenvolvimento , Pigmentação/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
4.
Planta ; 240(5): 1075-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25115559

RESUMO

Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.


Assuntos
Carboidratos/análise , Cotilédone/embriologia , Pinus/embriologia , Proteínas de Plantas/análise , Sementes/embriologia , Biomarcadores/análise , Análise por Conglomerados , Cotilédone/metabolismo , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Frutose/metabolismo , Glucose/metabolismo , Maltose/metabolismo , Pinus/metabolismo , Proteoma/análise , Proteômica/métodos , Sementes/classificação , Sementes/metabolismo , Sacarose/metabolismo , Fatores de Tempo , Água/metabolismo
5.
Plant Biotechnol J ; 12(3): 286-99, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24256179

RESUMO

Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species.


Assuntos
Biotecnologia , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pinus/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Cruzamento , DNA Complementar/genética , Bases de Dados Genéticas , Tamanho do Genoma , Genótipo , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Família Multigênica , RNA de Plantas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Árvores
6.
Physiol Plant ; 150(2): 271-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23789891

RESUMO

A global DNA methylation and proteomics approach was used to investigate somatic embryo maturation in hybrid larch. Each developmental step during somatic embryogenesis was associated with a distinct and significantly different global DNA methylation level: from 45.8% mC for undifferentiated somatic embryos (1-week proliferation) to 61.5% mC for immature somatic embryos (1-week maturation), while maturation was associated with a decrease in DNA methylation to 53.4% for mature cotyledonary somatic embryos (8-weeks maturation). The presence of 5-azacytidine (hypo-methylating agent) or hydroxyurea (hyper-methylating agent) in the maturation medium altered the global DNA methylation status of the embryogenic cultures, and significantly reduced both their relative growth rate and embryogenic potential, suggesting an important role for DNA methylation in embryogenesis. Maturation was also assessed by examining changes in the total protein profile. Storage proteins, identified as legumin- and vicilin-like, appeared at the precotyledonary stage. In the proteomic study, total soluble proteins were extracted from embryos after 1 and 8 weeks of maturation, and separated by two-dimensional gel electrophoresis. There were 147 spots which showed significant differences between the stages of maturation; they were found to be involved mainly in primary metabolism and the stabilization of the resulting metabolites. This indicated that the somatic embryo was still metabolically active at 8 weeks of maturation. This is the first report of analyses of global DNA methylation (including the effects of hyper- and hypo-treatments) and proteome during somatic embryogenesis in hybrid larch, and thus provides novel insights into maturation of conifer somatic embryos.


Assuntos
Biomarcadores/metabolismo , Metilação de DNA/genética , Hibridização Genética , Larix/embriologia , Larix/genética , Proteômica , Sementes/metabolismo , Carbono/metabolismo , Cruzamentos Genéticos , Eletroforese em Gel Bidimensional , Cinética , Larix/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
7.
Physiol Plant ; 152(1): 184-201, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24460664

RESUMO

Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets.


Assuntos
Proteômica , Sementes/genética , Transcriptoma , Água/metabolismo , Ácido Abscísico/metabolismo , Glicoproteínas , Pinus/genética , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Proteínas de Plantas , Técnicas de Embriogênese Somática de Plantas
8.
Biomolecules ; 13(9)2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37759800

RESUMO

The Douglas fir (Pseudotsuga menziesii) is a conifer native to North America that has become increasingly popular in plantations in France due to its many advantages as timber: rapid growth, quality wood, and good adaptation to climate change. Tree genetic improvement programs require knowledge of a species' genetic structure and history and the development of genetic markers. The very slow progress in this field, for Douglas fir as well as the entire genus Pinus, can be explained using the very large size of their genomes, as well as by the presence of numerous highly repeated sequences. Proteomics, therefore, provides a powerful way to access genomic information of otherwise challenging species. Here, we present the first Douglas fir proteomes acquired using nLC-MS/MS from 12 different plant organs or tissues. We identified 3975 different proteins and quantified 3462 of them, then examined the distribution of specific proteins across plant organs/tissues and their implications in various molecular processes. As the first large proteomic study of a resinous tree species with organ-specific profiling, this short note provides an important foundation for future genomic annotations of conifers and other trees.


Assuntos
Pseudotsuga , Traqueófitas , Proteoma/genética , Pseudotsuga/genética , Proteômica , Espectrometria de Massas em Tandem , Mudança Climática
9.
Front Plant Sci ; 13: 823617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237290

RESUMO

Exposure of Norway spruce (Picea abies) somatic embryos and those of many other conifers to post-maturation desiccation treatment significantly improves their germination. An integration analysis was conducted to understand the underlying processes induced during the desiccation phase at the molecular level. Carbohydrate, protein and phytohormone assays associated with histological and proteomic studies were performed for the evaluation of markers and actors in this phase. Multivariate comparison of mature somatic embryos with mature desiccated somatic embryos and/or zygotic embryos provided new insights into the processes involved during the desiccation step of somatic embryogenesis. Desiccated embryos were characterized by reduced levels of starch and soluble carbohydrates but elevated levels of raffinose family oligosaccharides. Desiccation treatment decreased the content of abscisic acid and its derivatives but increased total auxins and cytokinins. The content of phytohormones in dry zygotic embryos was lower than in somatic embryos, but their profile was mostly analogous, apart from differences in cytokinin profiles. The biological processes "Acquisition of desiccation tolerance", "Response to stimulus", "Response to stress" and "Stored energy" were activated in both the desiccated somatic embryos and zygotic embryos when compared to the proteome of mature somatic embryos before desiccation. Based on the specific biochemical changes of important constituents (abscisic acid, raffinose, stachyose, LEA proteins and cruciferins) induced by the desiccation treatment and observed similarities between somatic and zygotic P. abies embryos, we concluded that the somatic embryos approximated to a state of desiccation tolerance. This physiological change could be responsible for the reorientation of Norway spruce somatic embryos toward a stage suitable for germination.

10.
Front Plant Sci ; 13: 1031686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388484

RESUMO

Vegetative propagation opens opportunities for the multiplication of elite tree progeny for forest regeneration material. For conifers such as Norway spruce (Picea abies) the most efficient vegetative propagation method is seed multiplication through somatic embryogenesis. Efficient culture methods are needed for somatic embryogenesis to be commercially viable. Compared to culturing as clumps, filter disc cultures can improve the proliferation of embryogenic tissue (ET) due to more even spread and better developmental synchronization. In this study, ET proliferation on filter discs was compared to proliferation as clumps. The study comprised 28 genotypes in four trials. The benefits of adding a pre-maturation step and the selection of fresh ET for the subculture were evaluated. Pre-maturation on hormone-free media before maturation did not significantly improve embryo yield but improved greenhouse survival from 69% to 80%, although there was high variation between lines. Filter disc cultivation of ET did result in better growth than in clumps but was more dependent on ET selection and the amount of ET than the clump cultivation method. Filter proliferation also favors certain lines. Post-maturation storage can be used to change the storage compound composition of the produced mature embryos. The embryo storage compound profile was analyzed after post-maturation cold storage treatments of 0, 4, 8, 31, and 61 weeks and compared to that of the zygotic embryos. Cold storage made the storage compound profile of somatic embryos closer to that of zygotic embryos, especially regarding the raffinose family oligosaccharides and storage proteins. Sucrose, hexose, and starch content remained higher in somatic embryos even through cold storage. Prolonged storage appeared less beneficial for embryos, some of which then seemed to spontaneously enter the germination process.

11.
Physiol Plant ; 141(2): 152-65, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20969577

RESUMO

An integrated physiological and proteomic approach was used to investigate the effects of high gellan gum concentration in the medium during maturation of somatic embryos (SE) of hybrid larch, by comparing embryos incubated in media with a high gellan gum concentration (8 g l(-1) ) and the standard concentration (4 g l(-1) ) after 1, 3, 6 and 8 weeks of maturation. Because of the reduced availability of water in the 8 g l(-1) medium, the cultured embryos had a lower osmotic water potential (Ψπ) and water contents, but higher dry weights (DWs), at 8 weeks compared with embryos cultured on the standard medium. The high gellan gum concentration induced a desiccation that is characteristic in zygotic embryo maturation. Total soluble proteins were extracted from SE with trichloroacetic acid (TCA)-acetone after 1 and 8 weeks of maturation on media with 4 and 8 g l(-1) of gellan gum, and separated by two-dimensional gel electrophoresis (2-DE) at pH 4-7. More than 1100 proteins were reproducibly detected on each gel. At 1 and 8 weeks respectively, the abundances of 62 and 49 spots detected in analyses of embryos matured at the two gellan gum concentrations, significantly differed. Among 62 significantly differing spots at 1 week of maturation, the corresponding proteins of 56 were reliably identified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), and were found to be mainly involved in 'carbohydrate metabolism', 'genetic information processing' or 'environmental information processing' according to kegg taxonomy. Both physiological parameters and the proteins identified suggested that the embryos were stressed when they were cultured on 4 g l(-1) of gellan gum.


Assuntos
Eletroforese em Gel Bidimensional , Larix/metabolismo , Proteínas de Plantas/metabolismo , Proteômica
12.
Biotechnol Rep (Amst) ; 32: e00684, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34754827

RESUMO

Somatic embryogenesis (SE) has high potential for large-scale clonal propagation of conifers. Different types of bioreactor cultures have been tested for the conifer SE process where the temporary immersion bioreactors (TIBs) have proved to be useful across the different developmental steps of the SE process. In the present study the use of TIBs was tested for hybrid larch (Larix × eurolepis Henry). The results showed two-fold increases in both fresh weight (FW) of pro-embryogenic masses (PEMs) and yield of cotyledonary embryos in the TIBs compared to solid medium in plates. For the germination phase, the highest number of roots per plant, the root length and height of plants were also obtained in the TIBs. The results show that the TIB system can be successfully used to support scale up of plant production in all steps of the SE process from proliferation to germination of hybrid larch (Larix × eurolepis Henry).

13.
Plants (Basel) ; 9(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326164

RESUMO

Aluminum (Al) is well known as a potent inhibitor of plant growth and development. It is notably present in soils in the soluble and bioavailable form Al3+ when the soil pH drops below 5. This situation is frequent, especially in softwood forests when litter decomposition is slow. In the present work, we studied the effects of Al3+ on the growth and development of Douglas fir plantlets. Somatic plantlets, regenerated via somatic embryogenesis, were grown in vitro on media supplemented with different concentrations of aluminum chloride (AlCl3): 0 µM, 200 µM, 500 µM. and 1 mM. We show that a concentration of 500 µM AlCl3 in medium significantly reduced root elongation (-21.8%), as well as stem growth (-14.6%). Also, a 25% reduction in dry mass of the plantlets was observed in presence of a concentration of 200 µM of AlCl3. Histological analysis of root tissues revealed significant damage, especially in conducting vessels. In addition, mineral cation content of plantlets was disturbed under Al exposure. More particularly, the Mg and K contents of needles and the Ca content of stems and needles were significantly reduced in presence of a concentration of 500 µM AlCl3 in the culture medium (-35.6%, -33.5%, -24%, and -34% respectively). However, all these damages appeared at relatively high Al concentrations when compared with other herbaceous species. This study shed light on the ability of Douglas fir in vitro plantlets to cope with the acid-driven toxicity of Al.

14.
Front Plant Sci ; 10: 118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873184

RESUMO

Somatic embryogenesis techniques have been developed for most coniferous species, but only using very juvenile material. To extend the techniques' scope, better integrated understanding of the key biological, physiological and molecular characteristics of embryogenic state is required. Therefore, embryonal masses (EMs) and non-embryogenic calli (NECs) have been compared during proliferation at multiple levels. EMs and NECs originating from a single somatic embryo (isogenic lines) of each of three unrelated genotypes were used in the analyses, which included comparison of the lines' anatomy by transmission light microscopy, transcriptomes by RNAseq Illumina sequencing, proteomes by free-gel analysis, contents of endogenous phytohormones (indole-3-acetic acid, cytokinins and ABA) by LC-MS analysis, and soluble sugar contents by HPLC. EMs were characterized by upregulation (relative to levels in NECs) of transcripts, proteins, transcription factors and active cytokinins associated with cell differentiation accompanied by histological, carbohydrate content and genetic markers of cell division. In contrast, NECs were characterized by upregulation (relative to levels in EMs) of transcripts, proteins and products associated with responses to stimuli (ABA, degradation forms of cytokinins, phenols), oxidative stress (reactive oxygen species) and carbohydrate storage (starch). Sub-Network Enrichment Analyses that highlighted functions and interactions of transcripts and proteins that significantly differed between EMs and NECs corroborated these findings. The study shows the utility of a novel approach involving integrated multi-scale transcriptomic, proteomic, biochemical, histological and anatomical analyses to obtain insights into molecular events associated with embryogenesis and more specifically to the embryogenic state of cell in Douglas-fir.

15.
Methods Mol Biol ; 1359: 131-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26619862

RESUMO

This review compiles research results published over the last 14 years on conifer somatic embryogenesis (SE). Emphasis is placed on the newest findings that affect the response of seed embryos (typical explants) and shoot primordia (rare explants) to the induction of SE and long-term culture of early somatic embryos. Much research in recent years has focused on maturation of somatic embryos, with respect to both yield and quality, as an important stage for the production of a large number of vigorous somatic seedlings. Attempts to scale up somatic embryo production numbers and handling have resulted in a few bioreactor designs, the utility of which may prove beneficial for an industrial application. A few simplified cryopreservation methods for embryonal masses (EM) were developed as a means to ensure cost-efficient long-term storage of genotypes during clonal field testing. Finally, recent long-term studies on the growth of somatic trees in the field, including seed production yield and comparison of seed parameters produced by somatic versus seed-derived trees, are described.


Assuntos
Desenvolvimento Vegetal/genética , Brotos de Planta/genética , Técnicas de Embriogênese Somática de Plantas/métodos , Plantas/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Reguladores de Crescimento de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Árvores/genética , Árvores/crescimento & desenvolvimento
16.
Environ Sci Pollut Res Int ; 23(9): 8617-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26797952

RESUMO

Phytoextraction of Cd is a growing biotechnology although we currently know few Cd hyperaccumulators, i.e., plant species able to accumulate at least 0.1 mg Cd g(-1) dry weight in aerial organs. Owing their deep root system and high biomass, trees are more and more preferred to herbaceous species for phytoextraction. Assuming that conifers could be relevant models under cold climates, we investigated cadmium tolerance of the hybrid larch Larix × eurolepis Henry (Larix decidua × Larix kaempferi) and the efficiency of this species to store this metal. In vitro grown larches were chosen in order to reduce time of exposure and to more rapidly evaluate their potential efficiency to accumulate Cd. One-month-old plantlets were exposed for 2 and 4 weeks to 250 and 500 µM Cd. Results showed that they tolerated a 4-week exposure to 250 µM Cd, whereas the content of photosynthetic pigment strongly dropped in plantlets growing in the presence of 500 µM Cd. In the presence of 250 µM Cd, shoot growth slightly decreased but photosynthetic pigment and total soluble carbohydrate contents were not modified and no lipid peroxidation was detected. In addition, these plantlets accumulated proline, particularly in shoots (two to three times more than control). In roots, Cd concentration in the intracellular fraction was always higher than in the cell wall fraction contrary to shoots where Cd concentration in the cell wall fraction increased with time and Cd concentration in the medium. In shoots, Cd concentration was lower than in roots with a ratio of 0.2 after 4 weeks of exposure but stayed around 0.2 mg g(-1) dry weight, thus a value higher than the threshold requested for Cd hyperaccumulators. Hybrid larch would thus be a relevant candidate for field test of Cd phytoextraction.


Assuntos
Cádmio/toxicidade , Larix/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Larix/crescimento & desenvolvimento , Larix/fisiologia , Fotossíntese , Raízes de Plantas , Poluentes do Solo/metabolismo , Árvores
17.
Methods Mol Biol ; 1359: 167-207, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26619863

RESUMO

Genome-wide profiling (transcriptomics, proteomics, metabolomics) is providing unprecedented opportunities to unravel the complexity of coordinated gene expression during embryo development in trees, especially conifer species harboring "giga-genome." This knowledge should be critical for the efficient delivery of improved varieties through seeds and/or somatic embryos in fluctuating markets and to cope with climate change. We reviewed "omics" as well as targeted gene expression studies during both somatic and zygotic embryo development in conifers and tentatively puzzled over the critical processes and genes involved at the specific developmental and transition stages. Current limitations to the interpretation of these large datasets are going to be lifted through the ongoing development of comprehensive genome resources in conifers. Nevertheless omics already confirmed that master regulators (e.g., transcription and epigenetic factors) play central roles. As in model angiosperms, the molecular regulation from early to late embryogenesis may mainly arise from spatiotemporal modulation of auxin-, gibberellin-, and abscisic acid-mediated responses. Omics also showed the potential for the development of tools to assess the progress of embryo development or to build genotype-independent, predictive models of embryogenesis-specific characteristics.


Assuntos
Genoma de Planta , Desenvolvimento Vegetal/genética , Técnicas de Embriogênese Somática de Plantas/métodos , Traqueófitas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Traqueófitas/genética
18.
Tree Physiol ; 25(9): 1101-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15996953

RESUMO

It has been postulated that osmotic effects on plant tissue are mediated by abscisic acid (ABA). Hybrid larch (Larix kaempferi (Lambert) Carr. x L. decidua Mill.) plantlets, transformed with the ABA-inducible wheat Em promoter associated with the Gus reporter gene, were axenically inoculated with two ectomycorrhizal fungi: Cenococcum geophilum Fr., considered tolerant to water stress, and Laccaria bicolor (Marie) Orton, considered less tolerant to drought. The mycorrhizal and non-mycorrhizal transgenic plantlets were subjected to osmotic stress by adding polyethylene glycol (PEG) to the culture medium. In the presence of PEG, L. bicolor and C. geophilum reduced shoot water potential and turgor potential, but increased host osmotic potential. Treatment of plantlets with PEG induced a significant increase in endogenous ABA concentrations. Laccaria bicolor and C. geophilum behaved similarly and significantly decreased the ABA response of plantlets to PEG treatment. Moreover, inoculation with either fungus regulated the ABA response of the plantlets even when the fungus was separated from the host by a cellophane sheet that prevented mycorrhiza formation. Although the wheat Em promoter was inducible in larch plantlets, it was not regulated by endogenous ABA. Induction of the wheat Em promoter in larch plantlets depended on organ type, with maximum induction in the root apex. Induction of the Em promoter was significantly decreased by mycorrhizal inoculation.


Assuntos
Ácido Abscísico/metabolismo , Larix/metabolismo , Larix/microbiologia , Micorrizas/fisiologia , Brotos de Planta/metabolismo , Água/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas , Glucuronidase/metabolismo , Hibridização Genética , Larix/efeitos dos fármacos , Larix/genética , Pressão Osmótica , Brotos de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas , Polietilenoglicóis , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
J Plant Physiol ; 165(9): 1003-10, 2008 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-18160178

RESUMO

Two APETALA2 domain transcription factors were characterized first in angiosperms, and, recently, in several gymnosperms. These proteins are involved in several processes, from flowering to embryogenesis in Arabidopsis thaliana. We extrapolated this result to hybrid larch (Larixxmarschlinsii Coaz) resulting from a cross between European (Larix decidua) and Japanese (Larix kaempferi) larches. Somatic embryogenesis is well described and controlled for this Pinaceae. We characterized two-AP2 domain genes: LmAP2L1 and LmAP2L2. Phylogenetic analysis confirmed that LmAP2L1 and LmAP2L2 were orthologous to Norway spruce PaAP2L1 and PaAP2L2 and that L1 forms appeared to be specific to Pinaceae. RT-PCR analysis showed that larch APETALA2 was differentially expressed during late somatic embryogenesis and during the first steps of germination. Whereas LmAP2L2 was constitutively expressed during this process, LmAP2L1 expression appeared only during late somatic embryogenesis, when embryos were able to germinate. Further, LmAP2L1 appeared to be the preferentially expressed form during embryo germination. Thus, LmAP2L1 seems to be a valuable molecular marker for hybrid larch late somatic embryogenesis and could play a role during post-embryonic development.


Assuntos
Proteínas de Arabidopsis/química , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Proteínas de Homeodomínio/química , Larix/embriologia , Larix/genética , Proteínas Nucleares/química , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência Conservada , Cruzamentos Genéticos , Hibridização Genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência
20.
Plant Cell Rep ; 25(8): 767-76, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16518635

RESUMO

In this study, several improvements and simplifications of SE protocols in Pinus pinaster (Ait.), a species of economic importance in the regions of Western Europe, are described. These improvements pertained to all stages of SE including high initiation frequencies in eight control pollinated seed families, relatively high somatic embryo maturation yield when cells were coated with particles of activated charcoal and a rapid production of plants directly in a shade house. The SE initiation frequency from isolated zygotic embryos was high (up to 100%) and plants were produced from 11 embryogenic lines representing all crosses. Based on these results, the estimated number of somatic embryos required to produce 1,000 plants varied from slightly more than the required number of plants to more than double this number depending on the line. Such an estimate is critical in developing plant production strategy when a number of embryogenic lines are considered for production of clonal plants.


Assuntos
Desenvolvimento Embrionário , Pinus/embriologia , Técnicas de Cultura de Tecidos , Aclimatação , Cruzamentos Genéticos , Criopreservação , Germinação/fisiologia , Plântula/embriologia , Sementes/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA