Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 17(1): 39, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992002

RESUMO

BACKGROUND: Maternal nutrition during pregnancy has life-long consequences for offspring. However, the effects of maternal overnutrition and/ or obesity on fetal growth remain poorly understood, e.g., it is not clear why birthweight is increased in some obese pregnancies but not in others. Maternal obesity is frequently studied using rodents on high-fat diets, but effects on fetal growth are inconsistent. The purpose of this review is to identify factors that contribute to reduced or increased fetal growth in rodent models of maternal overnutrition. METHODS: We searched Web of Science and screened 2173 abstracts and 328 full texts for studies that fed mice or rats diets providing ~ 45% or ~ 60% calories from fat for 3 weeks or more prior to pregnancy. We identified 36 papers matching the search criteria that reported birthweight or fetal weight. RESULTS: Studies that fed 45% fat diets to mice or 60% fat diets to rats generally did not show effects on fetal growth. Feeding a 45% fat diet to rats generally reduced birth and fetal weight. Feeding mice a 60% fat diet for 4-9 weeks prior to pregnancy tended to increase in fetal growth, whereas feeding this diet for a longer period tended to reduce fetal growth. CONCLUSIONS: The high-fat diets used most often with rodents do not closely match Western diets and frequently reduce fetal growth, which is not a typical feature of obese human pregnancies. Adoption of standard protocols that more accurately mimic effects on fetal growth observed in obese human pregnancies will improve translational impact in this field.


Assuntos
Peso ao Nascer , Dieta Hiperlipídica , Desenvolvimento Fetal , Fenômenos Fisiológicos da Nutrição Materna , Animais , Feminino , Camundongos , Modelos Animais , Obesidade/complicações , Ratos
2.
Reprod Biol Endocrinol ; 16(1): 58, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895300

RESUMO

BACKGROUND: Pregnancy-associated plasma protein-A2 (PAPP-A2) is consistently upregulated in the placentae of pregnancies complicated by preeclampsia and fetal growth restriction. The causes and significance of this upregulation remain unknown, but it has been hypothesized that it is a compensatory response to improve placental growth and development. We predicted that, if the upregulation of PAPP-A2 in pregnancy complications reflects a compensatory response, then deletion of Pappa2 in mice would exacerbate the effects of a gene deletion previously reported to impair placental development: deficiency of matrix metalloproteinase-9 (MMP9). METHODS: We crossed mice carrying deletions in Pappa2 and Mmp9 to produce pregnancies deficient in one, both, or neither of these genes. We measured pregnancy rates, number of conceptuses, fetal and placental growth, and the histological structure of the placenta. RESULTS: We found no evidence of reduced fertility, increased pregnancy loss, or increased fetal demise in Mmp9 -/- females. In pregnancies segregating for Mmp9, Mmp9 -/- fetuses were lighter than their siblings with a functional Mmp9 allele. However, deletion of Pappa2 did not exacerbate or reveal any effects of Mmp9 deficiency. We observed some effects of Pappa2 deletion on placental structure that were independent of Mmp9 deficiency, but no effects on fetal growth. At G16, male fetuses were heavier than female fetuses and had heavier placentae with larger junctional zones and smaller labyrinths. CONCLUSIONS: Effects of Mmp9 deficiency were not exacerbated by the deletion of Pappa2. Our results do not provide evidence that upregulation of placental PAPP-A2 represents a mechanism to compensate for impaired fetal growth.


Assuntos
Modelos Animais de Doenças , Retardo do Crescimento Fetal/metabolismo , Metaloproteinase 9 da Matriz/deficiência , Fenótipo , Proteína Plasmática A Associada à Gravidez/deficiência , Animais , Feminino , Retardo do Crescimento Fetal/genética , Peso Fetal/fisiologia , Masculino , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteína Plasmática A Associada à Gravidez/genética
3.
R Soc Open Sci ; 8(5): 210281, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34084552

RESUMO

Evidence for terrestriality in early tetrapods is fundamentally contradictory. Fossil trackways attributed to early terrestrial tetrapods long predate the first body fossils from the Late Devonian. However, the Devonian body fossils demonstrate an obligatorily aquatic lifestyle. Complicating our understanding of the transition from water to land is a pronounced gap in the fossil record between the aquatic Devonian taxa and presumably terrestrial tetrapods from the later Early Carboniferous. Recent work suggests that an obligatorily aquatic habit persists much higher in the tetrapod tree than previously recognized. Here, we present independent microanatomical data of locomotor capability from the earliest Carboniferous of Blue Beach, Nova Scotia. The site preserves limb bones from taxa representative of Late Devonian to mid-Carboniferous faunas as well as a rich trackway record. Given that bone remodels in response to functional stresses including gravity and ground reaction forces, we analysed both the midshaft compactness profiles and trabecular anisotropy, the latter using a new whole bone approach. Our findings suggest that early tetrapods retained an aquatic lifestyle despite varied limb morphologies, prior to their emergence onto land. These results suggest that trackways attributed to early tetrapods be closely scrutinized for additional information regarding their creation conditions, and demand an expansion of sampling to better identify the first terrestrial tetrapods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA