Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 86(5): 4355-4360, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33606536

RESUMO

We present a systematic investigation of the photophysical properties of diazocines in aqueous media. The Z-E photoconversion yields of CH2CH2- and CH2S-bridged diazocines decrease with increasing water content in acetonitrile. However, there is one exception. A CH2-NAc-bridged diazocine mostly retains its photostationary state in water (85 to 72%) because of the high quantum yields for the Z → E conversion. Moreover, it is water-soluble without further substitution and is therefore ideally suited as a photoswitch in biological (aqueous) environments.


Assuntos
Água
2.
Beilstein J Org Chem ; 17: 1503-1508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239618

RESUMO

Novel nitrogen-bridged diazocines (triazocines) were synthesized that carry a formyl or an acetyl group at the CH2NR-bridge and bromo- or iodo-substituents at the distant phenyl ring. The photophysical properties were investigated in acetonitrile and water. As compared to previous approaches the yields of the intramolecular azo cyclizations were increased (from ≈40 to 60%) using an oxidative approach starting from the corresponding aniline precursors. The Z→E photoconversion yields in acetonitrile are 80-85% and the thermal half-lives of the metastable E configurations are 31-74 min. Particularly, the high photoconversion yields (≈70%) of the water-soluble diazocines are noteworthy, which makes them promising candidates for applications in photopharmacology. The halogen substituents allow further functionalization via cross-coupling reactions.

3.
J Am Chem Soc ; 141(34): 13592-13600, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31365240

RESUMO

Diazocines are bridged azobenzenes with superior photophysical properties. In contrast to azobenzenes the Z configuration is thermodynamically stable and the E isomer is metastable. We present a new class of nitrogen bridged diazocines with bathochromically shifted switching wavelengths and remarkably high quantum yields (-NH-CH2- bridged diazocine: ΦZ→E = 0.57, ΦE→Z = 0.8). Z to E isomerization is induced by irradiation with blue light, whereas switching back to the Z isomer is accomplished with light in the near-infrared window (up to 740 nm), which is important for medical applications like photopharmacology (deep tissue penetration). Furthermore, substitution at the bridging nitrogen should provide access to widely applicable tricyclic, photoswitchable pharmacophores. The -NAc-CH2- bridged derivative is soluble in water, and all photophysical properties (conversion rates, quantum yields, and thermal half-lives) are largely retained. Hence, this diazocine is an ideal photoswitch for applications in biochemical systems and in photopharmacology.

4.
Anal Chem ; 91(17): 11367-11373, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31380630

RESUMO

We present 1D and 2D NMR experiments that provide in situ insights into photoinduced isomerizations. Irradiation during the mixing period of an exchange spectroscopy (EXSY) experiment leads to characteristic cross peaks in 2D spectra. The phototriggered exchange of magnetization occurring in photoswitchable (Z)- and (E)-isomers of three selected azo compounds provides information on the dynamic E/Z equilibria. We report the dependence of the diagonal-to-cross-peak ratio on concentration, light intensity, and mixing time. In analogy to exchange spectroscopy, this ratio mirrors the efficiency of light induced molecular transformations. Furthermore, we present a time-saving 1D version and a combined light/phase cycle scheme for enhanced detectability of photoinduced changes in the spectrum. This insight into light-induced structural changes is highly suited to study macromolecules, in which photoswitchable units trigger conformational changes.

5.
J Am Chem Soc ; 138(40): 13111-13114, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27685503

RESUMO

Diazocines, bridged azobenzenes, exhibit superior photophysical properties compared to parent azobenzenes such as high switching efficiencies, quantum yields, and particularly switching wavelengths in the visible range. Synthesis, however, proceeds with low yields, and derivatives are difficult to prepare. We now present two heterodiazocines which are easier to synthesize, and the general procedures should also provide facile access to derivatives. Moreover, both compounds can be switched with light in the far-red (650 nm). Accessibility and photophysical properties make them ideal candidates for applications such as photoswitchable drugs and functional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA