Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Opt Express ; 30(8): 12510-12520, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472885

RESUMO

Free-space all-optical diffractive systems have shown promise for neuromorphic classification of objects without converting light to the electronic domain. While the factors that govern these systems have been studied for coherent light, the fundamental properties for incoherent light have not been addressed, despite the importance for many applications. Here we use a co-design approach to show that optimized systems for spatially incoherent light can achieve performance on par with the best linear electronic classifiers even with a single layer containing few diffractive features. This performance is limited by the inherent linear nature of incoherent optical detection. We circumvent this limit by using a differential detection scheme that achieves greater than 94% classification accuracy on the MNIST dataset and greater than 85% classification accuracy for Fashion-MNIST, using a single layer metamaterial.

2.
Nano Lett ; 21(5): 1928-1934, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621097

RESUMO

The III-nitride semiconductors have many attractive properties for field-emission vacuum electronics, including high thermal and chemical stability, low electron affinity, and high breakdown fields. Here, we report top-down fabricated gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with record ultralow turn-on voltages down to ∼0.24 V and stable high field-emission currents, tested up to several microamps for single-emitter devices. We leverage a scalable, top-down GaN nanofabrication method leading to damage-free and smooth surfaces. Gap-dependent and pressure-dependent studies provide new insights into the design of future, integrated nanogap vacuum electron devices. The results show promise for a new class of high-performance and robust, on-chip, III-nitride-based vacuum nanoelectronics operable in air or reduced vacuum.

3.
Small ; 14(42): e1802806, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30247808

RESUMO

Detection of low intensity light down to a few photons requires photodetectors with high gain. A new photodetector is reported based on C60 -sensitized aligned carbon nanotube (CNT) transistors with an extremely high responsivity of 108 A W-1 (gain > 108 ) in the ultraviolet and visible range, and 720 A W-1 (gain = 940) in the infrared range. In contrast to most sensitized phototransistors that operate on the photogating effect, the new photodetector operates on the modulation of the electrons scattering in the CNTs, leading to negative photoconductivity. Comparison with similar photodetectors using random CNT networks shows the benefit of using aligned CNTs. At room temperature, the aligned CNT photodetectors are demonstrated to detect a few tens of photons per CNT.

4.
Phys Chem Chem Phys ; 19(29): 19461-19467, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28718471

RESUMO

Two-dimensional (2D) materials have attracted much attention due to their novel properties. An exciting new class of 2D materials based on metal-organic frameworks (MOFs) has recently emerged, displaying high electrical conductivity, a rarity among organic nanoporous materials. The emergence of these materials raises intriguing questions about their fundamental electronic, optical, and thermal properties, but few studies exist in this regard. Here we present an atomistic study of the thermoelectric properties of crystalline 2D MOFs X3(HITP)2 with X = Ni, Pd or Pt, and HITP = 2,3,6,7,10,11-hexaiminotriphenylene, using both ab initio transport models and classical molecular dynamics simulations. We find that these materials have a high Seebeck coefficient and low thermal conductivity, making them promising for thermoelectric applications. Furthermore, we explore the dependence of thermoelectric transport properties on the atomic structure by comparing the calculated band structure, band alignment, and electronic density of states of the three 2D MOFs, and find that the thermoelectric transport properties strongly depend on both the interaction between the ligands and the metal ions, and the d orbital splitting of the metal ions induced by the ligands. This demonstrates that selection of the metal ion is a powerful approach to control and enhance the thermoelectric properties. Interestingly we reveal an unexpected effect where, unlike for electrons, the thermal and electrical current may not be equally carried by the holes, leading to a significant deviation from the Wiedemann-Franz law. The results of this work provide fundamental guidance to optimize the existing 2D MOFs, and to design and discover new families of MOF-like materials for thermoelectric applications.

5.
Inorg Chem ; 55(15): 7233-49, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27399607

RESUMO

As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.

6.
Nano Lett ; 15(12): 8129-35, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26529491

RESUMO

Semiconducting nanowires have been explored for a number of applications in optoelectronics such as photodetectors and solar cells. Currently, there is ample interest in identifying the mechanisms that lead to photoresponse in nanowires in order to improve and optimize performance. However, distinguishing among the different mechanisms, including photovoltaic, photothermoelectric, photoemission, bolometric, and photoconductive, is often difficult using purely optoelectronic measurements. In this work, we present an approach for performing combined and simultaneous thermoelectric and optoelectronic measurements on the same individual nanowire. We apply the approach to GaN/AlGaN core/shell and GaN/AlGaN/GaN core/shell/shell nanowires and demonstrate the photothermoelectric nature of the photocurrent observed at the electrical contacts at zero bias, for above- and below-bandgap illumination. Furthermore, the approach allows for the experimental determination of the temperature rise due to laser illumination, which is often obtained indirectly through modeling. We also show that under bias, both above- and below-bandgap illumination leads to a photoresponse in the channel with signatures of persistent photoconductivity due to photogating. Finally, we reveal the concomitant presence of photothermoelectric and photogating phenomena at the contacts in scanning photocurrent microscopy under bias by using their different temporal response. Our approach is applicable to a broad range of nanomaterials to elucidate their fundamental optoelectronic and thermoelectric properties.

7.
Nano Lett ; 15(4): 2612-9, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25723259

RESUMO

Transition metal dichalcogenides (TMDs) have emerged as a new class of two-dimensional materials that are promising for electronics and photonics. To date, optoelectronic measurements in these materials have shown the conventional behavior expected from photoconductors such as a linear or sublinear dependence of the photocurrent on light intensity. Here, we report the observation of a new regime of operation where the photocurrent depends superlinearly on light intensity. We use spatially resolved photocurrent measurements on devices consisting of CVD-grown monolayers of TMD alloys spanning MoS2 to MoSe2 to show the photoconductive nature of the photoresponse, with the photocurrent dominated by recombination and field-induced carrier separation in the channel. Time-dependent photoconductivity measurements show the presence of persistent photoconductivity for the S-rich alloys, while photocurrent measurements at fixed wavelength for devices of different alloy compositions show a systematic decrease of the responsivity with increasing Se content associated with increased linearity of the current-voltage characteristics. A model based on the presence of different types of recombination centers is presented to explain the origin of the superlinear dependence on light intensity, which emerges when the nonequilibrium occupancy of initially empty fast recombination centers becomes comparable to that of slow recombination centers.


Assuntos
Dissulfetos/química , Dissulfetos/efeitos da radiação , Eletroquímica/instrumentação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Molibdênio/química , Molibdênio/efeitos da radiação , Fotoquímica/instrumentação , Ligas/química , Ligas/efeitos da radiação , Cristalização/métodos , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Gases/química , Luz , Modelos Lineares , Teste de Materiais , Modelos Químicos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Doses de Radiação
8.
Nano Lett ; 14(7): 3953-8, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24875576

RESUMO

Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance.


Assuntos
Nanotubos de Carbono/química , Espectroscopia Terahertz/instrumentação , Desenho de Equipamento , Nanotubos de Carbono/ultraestrutura , Temperatura , Radiação Terahertz
9.
Nat Mater ; 17(7): 570-571, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867168
10.
Sci Adv ; 10(20): eadn8980, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748793

RESUMO

Understanding the limits of spatiotemporal carrier dynamics, especially in III-V semiconductors, is key to designing ultrafast and ultrasmall optoelectronic components. However, identifying such limits and the properties controlling them has been elusive. Here, using scanning ultrafast electron microscopy, in bulk n-GaAs and p-InAs, we simultaneously measure picosecond carrier dynamics along with three related quantities: subsurface band bending, above-surface vacuum potentials, and surface trap densities. We make two unexpected observations. First, we uncover a negative-time contrast in secondary electrons resulting from an interplay among these quantities. Second, despite dopant concentrations and surface state densities differing by many orders of magnitude between the two materials, their carrier dynamics, measured by photoexcited band bending and filling of surface states, occur at a seemingly common timescale of about 100 ps. This observation may indicate fundamental kinetic limits tied to a multitude of material and surface properties of optoelectronic III-V semiconductors and highlights the need for techniques that simultaneously measure electro-optical kinetic properties.

11.
Nanotechnology ; 24(10): 105202, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23416509

RESUMO

Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication.

12.
Nano Lett ; 11(8): 3074-9, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21696178

RESUMO

The electronic properties of heterojunction electron gases formed in GaN/AlGaN core/shell nanowires with hexagonal and triangular cross sections are studied theoretically. We show that at nanoscale dimensions, the nonpolar hexagonal system exhibits degenerate quasi-one-dimensional electron gases at the hexagon corners, which transition to a core-centered electron gas at lower doping. In contrast, polar triangular core/shell nanowires show either a nondegenerate electron gas on the polar face or a single quasi-one-dimensional electron gas at the corner opposite the polar face, depending on the termination of the polar face. More generally, our results indicate that electron gases in closed nanoscale systems are qualitatively different from their bulk counterparts.

13.
Nano Lett ; 11(6): 2490-4, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21604750

RESUMO

Photovoltaic devices using GaAs nanopillar radial p-n junctions are demonstrated by means of catalyst-free selective-area metal-organic chemical vapor deposition. Dense, large-area, lithographically defined vertical arrays of nanowires with uniform spacing and dimensions allow for power conversion efficiencies for this material system of 2.54% (AM 1.5 G) and high rectification ratio of 213 (at ±1 V). The absence of metal catalyst contamination results in leakage currents of ∼236 nA at -1 V. High-resolution scanning photocurrent microscopy measurements reveal the independent functioning of each nanowire in the array with an individual peak photocurrent of ∼1 nA at 544 nm. External quantum efficiency shows that the photocarrier extraction highly depends on the degenerately doped transparent contact oxide. Two different top electrode schemes are adopted and characterized in terms of Hall, sheet resistance, and optical transmittance measurements.


Assuntos
Arsenicais/química , Fontes de Energia Elétrica , Gálio/química , Nanoestruturas/química , Energia Solar , Teoria Quântica , Propriedades de Superfície
14.
Nano Lett ; 10(12): 4935-8, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21053980

RESUMO

We present electronic transport measurements of GaAs nanowires grown by catalyst-free metal-organic chemical vapor deposition. Despite the nanowires being doped with a relatively high concentration of substitutional impurities, we find them inordinately resistive. By measuring sufficiently high aspect ratio nanowires individually in situ, we decouple the role of the contacts and show that this semi-insulating electrical behavior is the result of trap-mediated carrier transport. We observe Poole-Frenkel transport that crosses over to phonon-assisted tunneling at higher fields, with a tunneling time found to depend predominantly on fundamental physical constants as predicted by theory. By using in situ electron beam irradiation of individual nanowires, we probe the nanowire electronic transport when free carriers are made available, thus revealing the nature of the contacts.

15.
Phys Rev Lett ; 104(17): 177402, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20482140

RESUMO

Doping of semiconductors is essential in modern electronic and photonic devices. While doping is well understood in bulk semiconductors, the advent of carbon nanotubes and nanowires for nanoelectronic and nanophotonic applications raises some key questions about the role and impact of doping at low dimensionality. Here we show that for semiconducting carbon nanotubes, band gaps and exciton binding energies can be dramatically reduced upon experimentally relevant doping, and can be tuned gradually over a broad range of energies in contrast with higher dimensional systems. The latter feature is made possible by a novel mechanism involving strong dynamical screening effects mediated by acoustic plasmons.

16.
ACS Nano ; 14(8): 10421-10427, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32692543

RESUMO

Achieving high gain in a photodetector is critical to detect weak light fields because of the need to amplify the signal. Here, we report the observation of a gain exceeding 109 for a phototransistor composed of an array of aligned semiconducting carbon nanotubes functionalized with a nanoscale layer of poly(3-hexylthiophene-2,5-diyl) (P3HT). In contrast to the expectation based on simple band alignments, the phototransistor operates by transferring holes between the P3HT and the CNT, trapping negative charge near the nanotubes. This mechanism leads to an integrating detector that is shown to detect as little as 490 aW and to resolve as few as 8-13 photons/nanotube at room temperature. A detailed experimental and theoretical investigation of the mechanism shows that the phototransistor is most sensitive when prepared in a nonequilibrium state.

17.
Sci Rep ; 9(1): 3268, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824712

RESUMO

The human eye is an exquisite photodetection system with the ability to detect single photons. The process of vision is initiated by single-photon absorption in the molecule retinal, triggering a cascade of complex chemical processes that eventually lead to the generation of an electrical impulse. Here, we analyze the single-photon detection prospects for an architecture inspired by the human eye: field-effect transistors employing carbon nanotubes functionalized with chromophores. We employ non-equilibrium quantum transport simulations of realistic devices to reveal device response upon absorption of a single photon. We establish the parameters that determine the strength of the response such as the magnitude and orientation of molecular dipole(s), as well as the arrangements of chromophores on carbon nanotubes. Moreover, we show that functionalization of a single nanotube with multiple chromophores allows for number resolution, whereby the number of photons in an incoming light packet can be determined. Finally, we assess the performance prospects by calculating the dark count rate, and we identify the most promising architectures and regimes of operation.

18.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 3): o595, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21201933

RESUMO

The crystal structure of the title compound, C(31)H(26)N(4)O(4), displays a trans conformation for the nitro-phenyl-diazenyl portion of the mol-ecule. Packing diagrams indicate that weak C-H⋯O hydrogen bonds, likely associated with a strong dipole moment present in the mol-ecule, dictate the arrangement of mol-ecules in the crystal structure.

19.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 12): o2258, 2008 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21581239

RESUMO

In the title compound, C(27)H(17)N(3)O(4), the azo group displays a trans conformation and the dihedral angles between the central benzene ring and the pendant anthracene and nitro-benzene rings are 82.94 (7) and 7.30 (9)°, respectively. In the crystal structure, weak C-H⋯O hydrogen bonds, likely associated with a dipole moment present on the mol-ecule, help to consolidate the packing.

20.
Nanoscale ; 10(41): 19595-19602, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30325390

RESUMO

Many applications of topological insulators (TIs) as well as new phenomena require devices with reduced dimensions. While much progress has been made to realize thin films of TIs with low bulk carrier densities, nanostructures have not yet been reported with similar properties, despite the fact that reduced dimensions should help diminish the contributions from bulk carriers. Here we demonstrate that Bi2Se3 nanoribbons, grown by a simple catalyst-free physical-vapour deposition, have inherently low bulk carrier densities, and can be further made bulk-free by thickness reduction, thus revealing the high mobility topological surface states. Magnetotransport and Hall conductance measurements, in single nanoribbons, show that at thicknesses below 30 nm, the bulk transport is completely suppressed which is supported by self-consistent band-bending calculations. The results highlight the importance of material growth and geometrical confinement to properly exploit the unique properties of topological surface states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA