Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Semin Immunol ; 24(6): 384-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23391428

RESUMO

Reactive oxygen species (ROS) such as superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) have long been implicated as pro-inflammatory, yet the sources of ROS and the molecular mechanisms by which they enhance inflammation have been less clear. Recent advances in the understanding of the molecular basis of inflammation mediated by the innate immune system have allowed these issues to be revisited. Although the Nox2 NADPH oxidases generate the bulk of ROS for antimicrobial host defense, recent studies have found that NADPH oxidase-dependent ROS production can actually dampen macrophage inflammatory responses to sterile pro-inflammatory stimuli. Instead, production of mitochondrial ROS has emerged as an important factor in both host defense and sterile inflammation. Excess mitochondrial ROS can be generated by either damage to the respiratory chain or by alterations of mitochondrial function such as those that increase membrane potential and reduce respiratory electron carriers. In autoinflammatory diseases, where key components of innate immune responses are activated by genetic mutations or environmental stimuli, inflammation has been found to be particularly sensitive to inhibition of mitochondrial ROS production. These findings have highlighted mitochondrial ROS as a novel generator of pro-inflammatory ROS and a potential therapeutic target in inflammatory diseases.


Assuntos
Inflamação/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Comunicação Celular , Humanos , Sistema Imunitário/metabolismo , Oxirredução
2.
Mol Pain ; 7: 70, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21936900

RESUMO

Neuropathic pain is a debilitating clinical condition with few efficacious treatments, warranting development of novel therapeutics. We hypothesized that dysregulated translation regulation pathways may underlie neuropathic pain. Peripheral nerve injury induced reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity, increased phosphorylation of mTOR and ERK downstream targets, augmented eIF4F complex formation and enhanced nascent protein synthesis. The AMP activated protein kinase (AMPK) activators, metformin and A769662, inhibited translation regulation signaling pathways, eIF4F complex formation, nascent protein synthesis in injured nerves and sodium channel-dependent excitability of sensory neurons resulting in a resolution of neuropathic allodynia. Therefore, injury-induced dysregulation of translation control underlies pathology leading to neuropathic pain and reveals AMPK as a novel therapeutic target for the potential treatment of neuropathic pain.


Assuntos
Terapia de Alvo Molecular , Neuralgia/tratamento farmacológico , Neuralgia/enzimologia , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Potenciais de Ação/efeitos dos fármacos , Animais , Western Blotting , Modelos Animais de Doenças , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Fator de Iniciação 4F em Eucariotos/biossíntese , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuralgia/fisiopatologia , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Transdução de Sinais/efeitos dos fármacos
3.
Neurosci Lett ; 563: 169-74, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24080374

RESUMO

Processing (P) bodies are RNA granules that comprise key cellular sites for the metabolism of mRNAs. In certain cells, including neurons, these RNA granules may also play an important role in storage of mRNAs in a translationally dormant state. Utilizing nerve growth factor (NGF) and interleukin 6 (IL6), which stimulate cap-dependent translation in sensory neurons, and adenosine monophosphate activated protein kinase (AMPK) activators, which inhibit cap-dependent translation, we have tested the hypothesis that cap-dependent translation is linked to P body formation in mammalian sensory neurons. Treatment with NGF and IL6 decreases, whereas metformin increases biochemical association of the P body marker and translational repressor/decapping activator Rck/p54/dhh1 with the 5'-mRNA-cap suggesting an ordered assembly of P bodies. Likewise, diverse AMPK activators enhance P body formation while NGF and IL6 decrease P bodies in sensory neurons. This bidirectional P body plasticity readily occurs in the axonal compartment of these neurons. These studies indicate that P body formation is intricately linked to cap-dependent translation in mammalian sensory neurons suggesting an important role for these organelles in the regulation of mRNA metabolism in the adult PNS.


Assuntos
Estruturas Citoplasmáticas/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , RNA/metabolismo , Células Receptoras Sensoriais/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Ativadores de Enzimas/farmacologia , Interleucina-6/farmacologia , Masculino , Camundongos Endogâmicos ICR , Fator de Crescimento Neural/farmacologia , Capuzes de RNA/metabolismo , Gânglio Trigeminal/citologia
4.
PLoS One ; 8(2): e56780, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418601

RESUMO

Mucolipidosis type IV is a lysosomal storage disorder resulting from mutations in the MCOLN1 gene, which encodes the endosomal/lysosomal Transient Receptor Potential channel protein mucolipin-1/TRPML1. Cells isolated from Mucolipidosis type IV patients and grown in vitro and in in vivo models of this disease both show several lysosome-associated defects. However, it is still unclear how TRPML1 regulates the transport steps implicated by these defects. Identifying proteins that associate with TRPML1 will facilitate the elucidation of its cellular and biochemical functions. We report here two saturation screens for proteins that interact with TRPML1: one that is based on immunoprecipitation/mass spectrometry and the other using a genetic yeast two-hybrid approach. From these screens, we identified largely non-overlapping proteins, which represent potential TRPML1-interactors., Using additional interaction assays on some of the potential interactors from each screen, we validated some proteins as candidate TRPML1 interactors In addition, our analysis indicates that each of the two screens not only identified some false-positive interactors, as expected from any screen, but also failed to uncover potential TRPML1 interactors. Future studies on the true interactors, first identified in these screens, will help elucidate the structure and function of protein complexes containing TRPML1.


Assuntos
Mucolipidoses/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Western Blotting , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Camundongos , Microscopia Confocal , Mucolipidoses/genética , Mutação , Ligação Proteica , Proteínas/genética , Canais de Potencial de Receptor Transitório/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA