RESUMO
OBJECTIVE: This study was undertaken to refine the spectrum of SCN1A epileptic disorders other than Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+) and optimize antiseizure management by correlating phenotype-genotype relationship and functional consequences of SCN1A variants in a cohort of patients. METHODS: Sixteen probands carrying SCN1A pathogenic variants were ascertained via a national collaborative network. We also performed a literature review including individuals with SCN1A variants causing non-DS and non-GEFS+ phenotypes and compared the features of the two cohorts. Whole cell patch clamp experiments were performed for three representative SCN1A pathogenic variants. RESULTS: Nine of the 16 probands (56%) had de novo pathogenic variants causing developmental and epileptic encephalopathy (DEE) with seizure onset at a median age of 2 months and severe intellectual disability. Seven of the 16 probands (54%), five with inherited and two with de novo variants, manifested focal epilepsies with mild or no intellectual disability. Sodium channel blockers never worsened seizures, and 50% of patients experienced long periods of seizure freedom. We found 13 SCN1A missense variants; eight of them were novel and never reported. Functional studies of three representative variants showed a gain of channel function. The literature review led to the identification of 44 individuals with SCN1A variants and non-DS, non-GEFS+ phenotypes. The comparison with our cohort highlighted that DEE phenotypes are a common feature. SIGNIFICANCE: The boundaries of SCN1A disorders are wide and still expanding. In our cohort, >50% of patients manifested focal epilepsies, which are thus a frequent feature of SCN1A pathogenic variants beyond DS and GEFS+. SCN1A testing should therefore be included in the diagnostic workup of pediatric, familial and nonfamilial, focal epilepsies. Alternatively, non-DS/non-GEFS+ phenotypes might be associated with gain of channel function, and sodium channel blockers could control seizures by counteracting excessive channel function. Functional analysis evaluating the consequences of pathogenic SCN1A variants is thus relevant to tailor the appropriate antiseizure medication.
Assuntos
Epilepsias Mioclônicas , Epilepsias Parciais , Canal de Sódio Disparado por Voltagem NAV1.1 , Humanos , Causalidade , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Mutação com Ganho de Função , Deficiência Intelectual/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Bloqueadores dos Canais de Sódio/uso terapêuticoRESUMO
The SCN1A gene encodes for the voltage-dependent Nav1.1 Na+ channel, an isoform mainly expressed in GABAergic neurons that is the target of hundreds of epileptogenic mutations. More recently, it has been shown that the SCN1A gene is also the target of mutations responsible for familial hemiplegic migraine (FHM-3), a rare autosomal dominant subtype of migraine with aura. Studies of these mutations indicate that they induce gain of function of the channel. Surprisingly, the mutation L1649Q responsible for pure FHM-3 showed a complete loss of function, but, when partially rescued it induced an overall gain of function because of modification of the gating properties of the mutant channel. Here, we report the characterization of the L1670W SCN1A mutation that has been previously identified in a Chinese family with pure FHM-3, and that we have identified also in a Caucasian American family with pure FHM-3. Notably, one patient in our family had severe neurological deterioration after brain radiation for cancer treatment. Functional analysis of L1670W reveals that the mutation is responsible for folding/trafficking defects and, when they are rescued by incubation at lower temperature or by expression in neurons, modifications of the gating properties lead to an overall gain of function. Therefore, L1670W is the second mutation responsible for FHM-3 with this pathophysiological mechanism, showing that it may be a recurrent mechanism for Nav1.1 hemiplegic migraine mutations.
RESUMO
We previously established that besides its canonical function as E3-ubiquitin ligase, parkin also behaves as a transcriptional repressor of p53. Here we show that parkin differently modulates presenilin-1 and presenilin-2 expression and functions at transcriptional level. Thus, parkin enhances/reduces the protein expression, promoter activity and mRNA levels of presenilin-1 and presenilin-2, respectively, in cells and in vivo. This parkin-associated function is independent of its ubiquitin-ligase activity and remains unrelated to its capacity to repress p53. Accordingly, physical interaction of endogenous or overexpressed parkin with presenilins promoters is demonstrated by chromatin immunoprecipitation assays (ChIP). Furthermore, we identify a consensus sequence, the deletion of which abolishes parkin-dependent modulation of presenilins-1/2 and p53 promoter activities. Interestingly, electrophoretic mobility shift assays (EMSA) revealed a physical interaction between this consensus sequence and wild-type but not mutated parkin. Finally, we demonstrate that the RING1-IBR-RING2 domain of parkin harbors parkin's potential to modulate presenilins promoters. This transcriptional control impacts on presenilins-associated phenotypes, since parkin increases presenilin-1-associated γ-secretase activity and reduces presenilin-2-linked caspase-3 activation. Overall, our data delineate a promoter responsive element targeted by parkin that drives differential regulation of presenilin-1 and presenilin-2 transcription with functional consequences for γ-secretase activity and cell death.