Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 18(8): 1482-8, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19193629

RESUMO

Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by defects in the activity of the lysosomal enzyme, glucocerebrosidase, resulting in intracellular accumulation of glucosylceramide (GlcCer). Neuronopathic forms, which comprise only a small percent of GD patients, are characterized by neurological impairment and neuronal cell death. Little is known about the pathways leading from GlcCer accumulation to neuronal death or dysfunction but defective calcium homeostasis appears to be one of the pathways involved. Recently, endoplasmic reticulum stress together with activation of the unfolded protein response (UPR) has been suggested to play a key role in cell death in neuronopathic forms of GD, and moreover, the UPR was proposed to be a common mediator of apoptosis in LSDs (Wei et al. (2008) Hum. Mol. Genet. 17, 469-477). We now systematically examine whether the UPR is activated in neuronal forms of GD using a selection of neuronal disease models and a combination of western blotting and semi-quantitative and quantitative real-time polymerase chain reaction. We do not find any changes in either protein or mRNA levels of a number of typical UPR markers including BiP, CHOP, XBP1, Herp and GRP58, in either cultured Gaucher neurons or astrocytes, or in brain regions from mouse models, even at late symptomatic stages. We conclude that the proposition that the UPR is a common mediator for apoptosis in all neurodegenerative LSDs needs to be re-evaluated.


Assuntos
Doença de Gaucher/metabolismo , Dobramento de Proteína , Animais , Apoptose , Astrócitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Humanos , Camundongos , Neurônios/metabolismo , Ratos
2.
Breast Cancer Res ; 12(3): R29, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20497549

RESUMO

INTRODUCTION: Necrosis at the tumor center is a common feature of aggressive breast cancers and has been associated with poor prognosis. It is commonly identified by means of invasive histopathology, which often correlates with morbidity and potential tumor cell dissemination, and limits the reconstruction of the whole necrotic domain. In this study we hypothesized that non covalent association to serum albumin (SA) and covalent binding to ligands for tumor-abundant cell receptors should synergistically drive selective accumulation and prolonged retention of imaging and therapeutic agents in breast tumor necrotic domains enabling in vivo identification, imaging and possibly treatment of such tumors. METHODS: Cyclo-Arg-Gly-Asp-D-Phe-Lys (c(RGDfK)) were conjugated to bacteriochlorophyll-derivatives (Bchl-Ds), previously developed as photodynamic agents, fluorescent probes and metal chelators in our lab. The c(RGDfK) component drives ligation to alphaVbeta3 integrin receptors over-expressed by tumor cells and neo-vessels, and the Bchl-D component associates to SA in a non-covalent manner. STL-6014, a c(RGDfK)-Bchl-D representative, was i.v. injected to CD-1, nude female mice bearing necrotic and non-necrotic human MDA-MB-231-RFP breast cancer tumors. The fluorescence signals of the Bchl-Ds and RFP were monitored over days after treatment, by quantitative whole body imaging and excised tumor/tissue samples derived thereof. Complementary experiments included competitive inhibition of STL-6014 uptake by free c(RGDfK), comparative pharmacokinetics of nonconjugated c(RGDfK) Bchl-D (STL-7012) and of two human serum albumin (HSA) conjugates: HSA-STL-7012 and HSA-STL-6014. RESULTS: STL-6014 and STL-7012 formed complexes with HSA (HSA/STL-6014, HSA/STL-7012). STL-6014, HSA-STL-7012 and HSA-STL-6014, selectively accumulated at similar rates, in tumor viable regions over the first 8 h post administration. They then migrated into the necrotic tumor domain and presented tumor half lifetimes (T1/2) in the range of days where T1/2 for HSA-STL-6014 > STL-6014 > HSA-STL-7012. No accumulation of STL-7012 was observed. Pre-injection of c(RGDfK) excess, prevented the uptake of STL-6014 in the small, but not in the large tumors. CONCLUSIONS: Non-covalent association to SA and covalent binding to c(RGDfK), synergistically enable the accumulation and prolonged retention of Bchl-Ds in the necrotic regions of tumors. These findings provide novel guidelines and strategy for imaging and treatment of necrotic tumors.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Desenho de Fármacos , Oligopeptídeos/metabolismo , Albumina Sérica/administração & dosagem , Animais , Bacterioclorofilas/química , Neoplasias da Mama/metabolismo , Diagnóstico por Imagem , Feminino , Humanos , Camundongos , Camundongos Nus , Necrose , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacocinética , Albumina Sérica/uso terapêutico , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA