Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(8): e0072722, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35856666

RESUMO

Many of the currently available anti-parasitic and anti-fungal frontline drugs have severe limitations, including adverse side effects, complex administration, and increasing occurrence of resistance. The discovery and development of new therapeutic agents is a costly and lengthy process. Therefore, repurposing drugs with already established clinical application offers an attractive, fast-track approach for novel treatment options. In this study, we show that the anti-cancer drug candidate MitoTam, a mitochondria-targeted analog of tamoxifen, efficiently eliminates a wide range of evolutionarily distinct pathogens in vitro, including pathogenic fungi, Plasmodium falciparum, and several species of trypanosomatid parasites, causative agents of debilitating neglected tropical diseases. MitoTam treatment was also effective in vivo and significantly reduced parasitemia of two medically important parasites, Leishmania mexicana and Trypanosoma brucei, in their respective animal infection models. Functional analysis in the bloodstream form of T. brucei showed that MitoTam rapidly altered mitochondrial functions, particularly affecting cellular respiration, lowering ATP levels, and dissipating mitochondrial membrane potential. Our data suggest that the mode of action of MitoTam involves disruption of the inner mitochondrial membrane, leading to rapid organelle depolarization and cell death. Altogether, MitoTam is an excellent candidate drug against several important pathogens, for which there are no efficient therapies and for which drug development is not a priority.


Assuntos
Antineoplásicos , Trypanosoma brucei brucei , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Potencial da Membrana Mitocondrial , Plasmodium falciparum
2.
PLoS Pathog ; 15(6): e1007828, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242261

RESUMO

The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite's life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies.


Assuntos
Flagelos/metabolismo , Leishmania/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Psychodidae/parasitologia , Animais , Flagelos/genética , Leishmania/genética , Proteoma/genética , Proteínas de Protozoários/genética
3.
PLoS Pathog ; 14(1): e1006794, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352310

RESUMO

Leishmania parasites are transmitted to vertebrate hosts by female phlebotomine sand flies as they bloodfeed by lacerating the upper capillaries of the dermis with their barbed mouthparts. In the sand fly midgut secreted proteophosphoglycans from Leishmania form a biological plug known as the promastigote secretory gel (PSG), which blocks the gut and facilitates the regurgitation of infective parasites. The interaction between the wound created by the sand fly bite and PSG is not known. Here we nanoinjected a sand fly egested dose of PSG into BALB/c mouse skin that lead to the differential expression of 7,907 transcripts. These transcripts were transiently up-regulated during the first 6 hours post-wound and enriched for pathways involved in inflammation, cell proliferation, fibrosis, epithelial cell differentiation and wound remodelling. We found that PSG significantly accelerated wound healing in vitro and in mice; which was associated with an early up-regulation of transcripts involved in inflammation (IL-1ß, IL-6, IL-10, TNFα) and inflammatory cell recruitment (CCL2, CCL3, CCL4, CXCL2), followed 6 days later by enhanced expression of transcripts associated with epithelial cell proliferation, fibroplasia and fibrosis (FGFR2, EGF, EGFR, IGF1). Dermal expression of IGF1 was enhanced following an infected sand fly bite and was acutely responsive to the deposition of PSG but not the inoculation of parasites or sand fly saliva. Antibody blockade of IGF1 ablated the gel's ability to promote wound closure in mouse ears and significantly reduced the virulence of Leishmania mexicana infection delivered by an individual sand fly bite. Dermal macrophages recruited to air-pouches on the backs of mice revealed that IGF1 was pivotal to the PSG's ability to promote macrophage alternative activation and Leishmania infection. Our data demonstrate that through the regurgitation of PSG Leishmania exploit the wound healing response of the host to the vector bite by promoting the action of IGF1 to drive the alternative activation of macrophages.


Assuntos
Fator de Crescimento Insulin-Like I/fisiologia , Leishmaniose Cutânea/patologia , Proteínas de Membrana/farmacologia , Proteoglicanas/farmacologia , Proteínas de Protozoários/farmacologia , Psychodidae/metabolismo , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Progressão da Doença , Feminino , Interações Hospedeiro-Parasita/fisiologia , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteoglicanas/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/parasitologia , Pele/patologia
4.
PLoS Pathog ; 11(8): e1005127, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26317207

RESUMO

The co-infection cases involving dixenous Leishmania spp. (mostly of the L. donovani complex) and presumably monoxenous trypanosomatids in immunocompromised mammalian hosts including humans are well documented. The main opportunistic parasite has been identified as Leptomonas seymouri of the sub-family Leishmaniinae. The molecular mechanisms allowing a parasite of insects to withstand elevated temperature and substantially different conditions of vertebrate tissues are not understood. Here we demonstrate that L. seymouri is well adapted for the environment of the warm-blooded host. We sequenced the genome and compared the whole transcriptome profiles of this species cultivated at low and high temperatures (mimicking the vector and the vertebrate host, respectively) and identified genes and pathways differentially expressed under these experimental conditions. Moreover, Leptomonas seymouri was found to persist for several days in two species of Phlebotomus spp. implicated in Leishmania donovani transmission. Despite of all these adaptations, L. seymouri remains a predominantly monoxenous species not capable of infecting vertebrate cells under normal conditions.


Assuntos
Coinfecção/microbiologia , Infecções por Euglenozoa/genética , Leishmaniose Visceral/parasitologia , Trypanosomatina/genética , Adaptação Fisiológica/fisiologia , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes de Protozoários , Leishmania donovani , Estágios do Ciclo de Vida , Reação em Cadeia da Polimerase , Psychodidae/microbiologia , Transcriptoma , Trypanosomatina/crescimento & desenvolvimento
5.
Parasitology ; 144(4): 403-410, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27876097

RESUMO

Leishmania parasites alternate in their life cycle between promastigote stages that develop in the gut of phlebotomine sand flies and amastigotes residing inside phagocytic cells of vertebrate hosts. For experimental infections of sand flies, promastigotes are frequently used as this way of infection is technically easier although ingestion of promastigotes by sand flies is unnatural. Here we aimed to answer a critical question, to what extent do promastigote-initiated experimental infections differ from those initiated with intracellular amastigotes. We performed side-by-side comparison of Leishmania development in Phlebotomus argentipes females infected alternatively with promastigotes from log-phase cultures or amastigotes grown ex vivo in macrophages. Early stage infections showed substantial differences in parasite load and representation of morphological forms. The differences disappeared along the maturation of infections; both groups developed heavy late-stage infections with colonization of the stomodeal valve, uniform representation of infective metacyclics and equal efficiency of transmission. The results showed that studies focusing on early phase of Leishmania development in sand flies should be initiated with intracellular amastigotes. However, the use of promastigote stages for sand fly infections does not alter significantly the final outcome of Leishmania donovani development in P. argentipes and their transmissibility to the vertebrate host.


Assuntos
Leishmania donovani/crescimento & desenvolvimento , Phlebotomus/parasitologia , Animais , Feminino , Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Camundongos , Camundongos Endogâmicos BALB C
6.
Pathogens ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111500

RESUMO

Leishmaniases are neglected diseases caused by protozoans of the genus Leishmania that threaten millions of people worldwide. Cutaneous leishmaniasis (CL) caused by L. major is a typical zoonosis transmitted by phlebotomine sand flies and maintained in rodent reservoirs. The female sand fly was assumed to become infected by feeding on the skin lesion of the host, and the relative contribution of asymptomatic individuals to disease transmission was unknown. In this study, we infected 32 Meriones shawi, North African reservoirs, with a natural dose of L. major obtained from the gut of infected sand flies. Skin manifestations appeared in 90% of the animals, and xenodiagnosis with the proven vector Phlebotomus papatasi showed transmissibility in 67% of the rodents, and 45% were repeatedly infectious to sand flies. Notably, the analysis of 113 xenodiagnostic trials with 2189 sand flies showed no significant difference in the transmissibility of animals in the asymptomatic and symptomatic periods; asymptomatic animals were infectious several weeks before the appearance of skin lesions and several months after their healing. These results clearly confirm that skin lesions are not a prerequisite for vector infection in CL and that asymptomatic animals are an essential source of L. major infection. These data are important for modeling the epidemiology of CL caused by L. major.

7.
Front Immunol ; 14: 1162596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022562

RESUMO

Introduction: Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. Methods results and discussion: In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. Conclusions: Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.


Assuntos
Leishmania infantum , Leishmaniose , Phlebotomus , Psychodidae , Animais , Feminino , Meios de Cultivo Condicionados , Mamíferos , Terapia de Imunossupressão
8.
Front Cell Infect Microbiol ; 12: 1022448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439224

RESUMO

Leishmania is the unicellular parasite transmitted by phlebotomine sand fly bite. It exists in two different forms; extracellular promastigotes, occurring in the gut of sand flies, and intracellular, round-shaped amastigotes residing mainly in vertebrate macrophages. As amastigotes originating from infected animals are often present in insufficient quality and quantity, two alternative types of amastigotes were introduced for laboratory experiments: axenic amastigotes and amastigotes from macrophages infected in vitro. Nevertheless, there is very little information about the degree of similarity/difference among these three types of amastigotes on proteomic level, whose comparison is crucial for assessing the suitability of using alternative types of amastigotes in experiments. In this study, L. mexicana amastigotes obtained from lesion of infected BALB/c mice were proteomically compared with alternatively cultivated amastigotes (axenic and macrophage-derived ones). Amastigotes of all three types were isolated, individually treated and analysed by LC-MS/MS proteomic analysis with quantification using TMT10-plex isobaric labeling. Significant differences were observed in the abundance of metabolic enzymes, virulence factors and proteins involved in translation and condensation of DNA. The most pronounced differences were observed between axenic amastigotes and lesion-derived amastigotes, macrophage-derived amastigotes were mostly intermediate between axenic and lesion-derived ones.


Assuntos
Leishmania mexicana , Camundongos , Animais , Leishmania mexicana/metabolismo , Proteoma/metabolismo , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camundongos Endogâmicos BALB C
9.
PLoS Negl Trop Dis ; 16(6): e0010510, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749562

RESUMO

Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.


Assuntos
Leishmania guyanensis , Leishmaniose Cutânea , Parasitos , Animais , Ciclo Celular , Leishmaniavirus , Lipídeos , Camundongos , Fosfatidato Fosfatase/genética
10.
Parasit Vectors ; 14(1): 15, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407867

RESUMO

BACKGROUND: Leishmaniasis, caused by parasites of the genus Leishmania, is a disease that affects up to 8 million people worldwide. Parasites are transmitted to human and animal hosts through the bite of an infected sand fly. Novel strategies for disease control require a better understanding of the key step for transmission, namely the establishment of infection inside the fly. METHODS: The aim of this work was to identify sand fly systemic transcriptomic signatures associated with Leishmania infection. We used next generation sequencing to describe the transcriptome of whole Phlebotomus papatasi sand flies when fed with blood alone (control) or with blood containing one of three trypanosomatids: Leishmania major, L. donovani and Herpetomonas muscarum, the latter being a parasite not transmitted to humans. RESULTS: Of the trypanosomatids studied, only L. major was able to successfully establish an infection in the host P. papatasi. However, the transcriptional signatures observed after each parasite-contaminated blood meal were not specific to success or failure of a specific infection and they did not differ from each other. The transcriptional signatures were also indistinguishable after a non-contaminated blood meal. CONCLUSIONS: The results imply that sand flies perceive Leishmania as just one feature of their microbiome landscape and that any strategy to tackle transmission should focus on the response towards the blood meal rather than parasite establishment. Alternatively, Leishmania could suppress host responses. These results will generate new thinking around the concept of stopping transmission by controlling the parasite inside the insect.


Assuntos
Perfilação da Expressão Gênica , Phlebotomus/parasitologia , Trypanosomatina , Animais , Sangue/parasitologia , Comportamento Alimentar , Humanos , Insetos Vetores/metabolismo , Insetos Vetores/parasitologia , Leishmania infantum , Leishmania major , Leishmaniose/parasitologia , Leishmaniose/transmissão , Phlebotomus/metabolismo
11.
Microorganisms ; 9(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207941

RESUMO

Antimicrobial peptides (AMPs) are produced to control bacteria, fungi, protozoa, and other infectious agents. Sand fly larvae develop and feed on a microbe-rich substrate, and the hematophagous females are exposed to additional pathogens. We focused on understanding the role of the AMPs attacin (Att), cecropin (Cec), and four defensins (Def1, Def2, Def3, and Def4) in Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. Larvae and adults were collected under different feeding regimens, in addition to females artificially infected by Leishmania infantum. AMPs' gene expression was assessed by qPCR, and gene function of Att and Def2 was investigated by gene silencing. The gene knockdown effect on bacteria and parasite abundance was evaluated by qPCR, and parasite development was verified by light microscopy. We demonstrate that L. longipalpis larvae and adults trigger AMPs expression during feeding, which corresponds to an abundant presence of bacteria. Att and Def2 expression were significantly increased in Leishmania-infected females, while Att suppression favored bacteria growth. In conclusion, L. longipalpis AMPs' expression is tuned in response to bacteria and parasites but does not seem to interfere with the Leishmania cycle.

12.
Virulence ; 12(1): 852-867, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33724149

RESUMO

Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.


Assuntos
Catalase/genética , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/patogenicidade , Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/genética , Fatores de Virulência/genética , Animais , Catalase/metabolismo , Células Cultivadas , Feminino , Leishmania mexicana/genética , Camundongos , Camundongos Endogâmicos BALB C , Psychodidae/parasitologia , Teschovirus/genética , Virulência , Fatores de Virulência/metabolismo
13.
Commun Biol ; 4(1): 139, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514858

RESUMO

Leishmania infantum causes visceral leishmaniasis, a deadly vector-borne disease introduced to the Americas during the colonial era. This non-native trypanosomatid parasite has since established widespread transmission cycles using alternative vectors, and human infection has become a significant concern to public health, especially in Brazil. A multi-kilobase deletion was recently detected in Brazilian L. infantum genomes and is suggested to reduce susceptibility to the anti-leishmanial drug miltefosine. We show that deletion-carrying strains occur in at least 15 Brazilian states and describe diversity patterns suggesting that these derive from common ancestral mutants rather than from recurrent independent mutation events. We also show that the deleted locus and associated enzymatic activity is restored by hybridization with non-deletion type strains. Genetic exchange appears common in areas of secondary contact but also among closely related parasites. We examine demographic and ecological scenarios underlying this complex L. infantum population structure and discuss implications for disease control.


Assuntos
DNA de Protozoário/genética , Evolução Molecular , Genes de Protozoários , Genoma de Protozoário , Leishmania infantum/genética , Leishmaniose Visceral/parasitologia , Brasil/epidemiologia , Deleção de Genes , Leishmania infantum/patogenicidade , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/transmissão , Epidemiologia Molecular , Filogenia , Deleção de Sequência , Sequenciamento Completo do Genoma
14.
Pathogens ; 9(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991768

RESUMO

Leishmania are obligate intracellular parasites known to have developed successful ways of efficient immunity evasion. Because of this, leishmaniasis, a disease caused by these flagellated protists, is ranked as one of the most serious tropical infections worldwide. Neither prophylactic medication, nor vaccination has been developed thus far, even though the infection has usually led to strong and long-lasting immunity. In this paper, we describe a "suicidal" system established in Leishmania mexicana, a human pathogen causing cutaneous leishmaniasis. This system is based on the expression and (de)stabilization of a basic phospholipase A2 toxin from the Bothrops pauloensis snake venom, which leads to the inducible cell death of the parasites in vitro. Furthermore, the suicidal strain was highly attenuated during macrophage infection, regardless of the toxin stabilization. Such a deliberately weakened parasite could be used to vaccinate the host, as its viability is regulated by the toxin stabilization, causing a profoundly reduced pathogenesis.

15.
Int J Parasitol Parasites Wildl ; 11: 40-45, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31879594

RESUMO

Visceral leishmaniasis caused by Leishmania donovani is regarded as mostly anthroponotic, but a role for animal reservoir hosts in transmission has been suggested in East Africa. Field studies in this region have shown the presence of this parasite in several mammalian species, including rodents of the genera Arvicanthis and Mastomys. Further, the natural reservoirs of Leishmania (Mundinia) sp. causing human cutaneous disease in Ghana, West Africa, are unknown. This study assessed the potential role of the Sub-Saharan rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis as hosts of L. donovani and L. sp. from Ghana, based on experimental infections of animals and xenodiagnoses. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to Phlebotomus orientalis was tested by pair-wise comparisons. None of the animals inoculated with L. donovani were infectious to P. orientalis females, although, in some animals, parasites were detected by PCR even 30 weeks post infection. Skin infections were characterized by low numbers of parasites while high parasite burdens were present in spleen, liver and lymph nodes only. Therefore, wild Arvicanthis and Mastomys found infected with L. donovani, should be considered parasite sinks rather than parasite reservoirs. This is indirectly supported also by results of host choice experiments with P. orientalis in which females preferred humans over both Arvicanthis and Mastomys, and their feeding rates on rodents ranged from 1.4 to 5.8% only. Therefore, the involvement of these rodents in transmission of L. donovani by P. orientalis is very unlikely. Similarly, poor survival of Leishmania parasites in the studied rodents and negative results of xenodiagnostic experiments do not support the involvement of Arvicanthis and Mastomys spp. in the transmission cycle of L. sp. from Ghana.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32984064

RESUMO

Phlebotomus perniciosus (Diptera: Phlebotominae) is a medically and veterinary important insect vector. It transmits the unicellular parasite Leishmania infantum that multiplies intracellularly in macrophages causing life-threatening visceral diseases. Leishmania establishment in the vertebrate host is substantially influenced by immunomodulatory properties of vector saliva that are obligatorily co-injected into the feeding site. The repertoire of P. perniciosus salivary molecules has already been revealed and, subsequently, several salivary proteins have been expressed. However, their immunogenic properties have never been studied. In our study, we tested three P. perniciosus recombinant salivary proteins-an apyrase rSP01 and yellow-related proteins rSP03 and rSP03B-and showed their anti-inflammatory nature on the murine bone-marrow derived macrophages. Even in the presence of pro-inflammatory stimuli (IFN-γ and bacterial lipopolysaccharide, LPS), all three recombinant proteins inhibited nitric oxide production. Moreover, rSP03 seems to have a very strong anti-inflammatory effect since it enhanced arginase activity, increased the production of IL-10, and inhibited the production of TNF-α even in macrophages stimulated with IFN-γ and LPS. These results suggest that P. perniciosus apyrase and yellow-related proteins may serve as enhancing factors in sand fly saliva, facilitating the development of Leishmania infection along with their anti-haemostatic properties. Additionally, rSP03 and rSP03B did not elicit the delayed-type hypersensitivity response in mice pre-exposed to P. perniciosus bites (measured as visible skin reaction). The results of our study may help to understand the potential function of recombinant's native counterparts and their role in Leishmania transmission and establishment within the host.


Assuntos
Phlebotomus , Animais , Anti-Inflamatórios , Cães , Macrófagos , Camundongos , Fenótipo , Proteínas Recombinantes , Proteínas e Peptídeos Salivares
17.
Parasit Vectors ; 13(1): 119, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32312325

RESUMO

BACKGROUND: In endemic areas of zoonotic leishmaniosis caused by L. infantum, early detection of Leishmania infection in dogs is essential to control the dissemination of the parasite to humans. The aim of this study was to evaluate the serological and/or molecular diagnostic performance of minimally and non-invasive samples (conjunctiva cells (CS) and peripheral blood (PB)) for monitoring Leishmania infection/exposure to Phlebotomus perniciosus salivary antigens in dogs at the beginning and the end of sand fly seasonal activity (May and October, respectively) and to assess associated risks factors. METHODS: A total of 208 sheltered dogs from endemic areas of leishmaniosis were screened. Leishmania DNA detection in PB on filter paper and CS was performed by nested-PCR (nPCR), while the detection of anti-Leishmania antibodies was performed using IFAT and ELISA. The exposure to P. perniciosus salivary antigens (SGH, rSP01 and rSP03B + rSP01) was measured by ELISA. RESULTS: Ninety-seven (46.6%) and 116 (55.8%) of the 208 dogs were positive to Leishmania antibodies or DNA by at least one test at the beginning and end of the sand fly season, respectively. IFAT and ELISA presented a substantial agreement in the serodiagnosis of leishmaniosis. Discrepant PB nPCR results were obtained between sampling points. Leishmania DNA was detected in CS of 72 dogs at the end of the phlebotomine season. The presence of antibodies to the parasite measured by ELISA was significantly higher in dogs presenting clinical signs compatible with leishmaniosis at both sampling points. Phlebotomus perniciosus salivary antibodies were detected in 179 (86.1%) and 198 (95.2%) of the screened dogs at the beginning and end of the phlebotomine season, respectively. CONCLUSIONS: The association between ELISA positivity and clinical signs suggests its usefulness to confirm a clinical suspicion. CS nPCR seems to be an effective and non-invasive method for assessing early exposure to the parasite. PB nPCR should not be used as the sole diagnostic tool to monitor Leishmania infection. The correlation between the levels of antibodies to P. perniciosus saliva and Leishmania antibodies suggests the use of a humoral response to sand fly salivary antigens as biomarkers of L. infantum infection.


Assuntos
Doenças do Cão/parasitologia , Leishmaniose/sangue , Leishmaniose/veterinária , Phlebotomus/parasitologia , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Túnica Conjuntiva/citologia , Túnica Conjuntiva/parasitologia , Doenças do Cão/prevenção & controle , Doenças do Cão/transmissão , Cães , Doenças Endêmicas/prevenção & controle , Feminino , Imunoglobulina G/sangue , Mordeduras e Picadas de Insetos , Proteínas de Insetos/imunologia , Insetos Vetores/parasitologia , Leishmania infantum/isolamento & purificação , Leishmaniose/imunologia , Proteínas de Protozoários/imunologia , Fatores de Risco , Proteínas e Peptídeos Salivares/imunologia , Testes Sorológicos
18.
J Med Entomol ; 57(2): 601-607, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31702779

RESUMO

Sand flies (Diptera: Psychodidae) are natural vectors of Leishmania. For the initiation of sand fly experimental infections either Leishmania amastigotes or promastigotes can be used. In order to obtain comparable results, it is necessary to adjust and standardize procedures. During this study, we conducted promastigote- and amastigote-initiated infections of Leishmania infantum Nicolle, 1908 parasites in Phlebotomus (Larroussius) perniciosus Newstead, 1911 in two laboratories with different levels of biosafety protection. Protocol originally designed for a biosafety level 2 facility was modified for biosafety level 3 facility and infection parameters were compared. Particularly, specially designed plastic containers were used for blood feeding; feeders were placed outside the sand fly cage, on the top of the mesh; feeding was performed inside the climatic chamber; separation of engorged females was done in Petri dishes kept on ice; engorged females were kept in the cardboard containers until dissection. All experiments, conducted in both laboratories, resulted in fully developed late stage infections with high number of parasites and colonization of the stomodeal valve. We demonstrated that protocol originally designed for biosafety level 2 facilities can be successfully modified for other biosafety facilities, depending on the special requirements of the individual institution/laboratory.


Assuntos
Laboratórios , Leishmania infantum/fisiologia , Phlebotomus/parasitologia , Animais , Contenção de Riscos Biológicos , Feminino , Leishmania infantum/crescimento & desenvolvimento
19.
Microorganisms ; 8(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962237

RESUMO

The clinical manifestation of leishmaniases depends on parasite species, host genetic background, and immune response. Manifestations of human leishmaniases are highly variable, ranging from self-healing skin lesions to fatal visceral disease. The scope of standard model hosts is insufficient to mimic well the wide disease spectrum, which compels the introduction of new model animals for leishmaniasis research. In this article, we study the susceptibility of three Asian rodent species (Cricetulus griseus, Lagurus lagurus, and Phodopus sungorus) to Leishmania major and L. donovani. The external manifestation of the disease, distribution, as well as load of parasites and infectiousness to natural sand fly vectors, were compared with standard models, BALB/c mice and Mesocricetus auratus. No significant differences were found in disease outcomes in animals inoculated with sand fly- or culture-derived parasites. All Asian rodent species were highly susceptible to L. major. Phodopus sungorus showed the non-healing phenotype with the progressive growth of ulcerative lesions and massive parasite loads. Lagurus lagurus and C. griseus represented the healing phenotype, the latter with high infectiousness to vectors, mimicking best the character of natural reservoir hosts. Both, L. lagurus and C. griseus were also highly susceptible to L. donovani, having wider parasite distribution and higher parasite loads and infectiousness than standard model animals.

20.
Sci Rep ; 10(1): 3566, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32108151

RESUMO

Leishmaniases are neglected tropical diseases and Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis are the most important causative agents of leishmaniases in the New World. These two parasite species may co-circulate in a given endemic area but their interactions in the vector have not been studied yet. We conducted experimental infections using both single infections and co-infections to compare the development of L. (L.) infantum (OGVL/mCherry) and L. (V.) braziliensis (XB29/GFP) in Lutzomyia longipalpis and Lutzomyia migonei. Parasite labelling by different fluorescein proteins enabled studying interspecific competition and localization of different parasite species during co-infections. Both Leishmania species completed their life cycle, producing infective forms in both sand fly species studied. The same happens in the co infections, demonstrating that the two parasites conclude their development and do not compete with each other. However, infections produced by L. (L.) infantum reached higher rates and grew more vigorously, as compared to L. (V.) braziliensis. In late-stage infections, L. (L.) infantum was present in all midgut regions, showing typical suprapylarian type of development, whereas L. (V.) braziliensis was concentrated in the hindgut and the abdominal midgut (peripylarian development). We concluded that both Lu. migonei and Lu. longipalpis are equally susceptible vectors for L. (L.) infantum, in laboratory colonies. In relation to L. (V.) braziliensis, Lu. migonei appears to be more susceptible to this parasite than Lu. longipalpis.


Assuntos
Insetos Vetores/parasitologia , Leishmania braziliensis/fisiologia , Leishmania infantum/fisiologia , Psychodidae/parasitologia , Animais , Sistema Digestório/parasitologia , Feminino , Leishmania braziliensis/crescimento & desenvolvimento , Leishmania infantum/crescimento & desenvolvimento , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA