RESUMO
We present a comprehensive, combined experimental and theoretical study of the core-level photoelectron and near-edge x-ray absorption fine structure (NEXAFS) spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil at the oxygen 1s, nitrogen 1s, carbon 1s, and the sulfur 2s and 2p edges. X-ray photoelectron spectra were calculated using equation-of-motion coupled-cluster theory (EOM-CCSD), and NEXAFS spectra were calculated using algebraic diagrammatic construction and EOM-CCSD. For the main peaks at O and N 1s as well as the S 2s edge, we find a single photoline. The S 2p spectra show a spin-orbit splitting of 1.2 eV with an asymmetric vibrational line shape. We also resolve the correlation satellites of these photolines. For the carbon 1s photoelectrons, we observe a splitting on the eV scale, which we can unanimously attribute to specific sites. In the NEXAFS spectra, we see very isolated pre-edge features at the oxygen 1s edge; the nitrogen edge, however, is very complex, in contrast to the XPS findings. The C 1s edge NEXAFS spectrum shows site-specific splitting. The sulfur 2s and 2p spectra are dominated by two strong pre-edge transitions. The S 2p spectra show again the spin-orbit splitting of 1.2 eV.
RESUMO
The ultrafast photo-induced ring opening of the oxirane derivative trans-stilbene oxide has been studied through the use of ultrafast UV/UV pump-probe spectroscopy by using photo-ion detection. Single- and multiphoton probe paths and final states were identified through comparisons between UV power studies and synchrotron-based vacuum ultraviolet (VUV) single-photon ionization studies. Three major time-dependent features of the parent ion (sub-450â fs decay, (1.5±0.2)â ps, and >100â ps) were observed. These decays are discussed in conjunction with the primary ring-opening mechanism of stilbene oxide, which occurs through C-C dissociation in the oxirane ring. The appearance of fragments relating to the masses of dehydrogenated diphenylmethane (167â amu) and dehydrogenated methylbenzene (90â amu) were also investigated. The appearance of the 167â amu fragment could suggest an alternative ultrafast ring-opening pathway via the dissociation of one of the C-O bonds within the oxirane ring.
Assuntos
Estilbenos , Fótons , SíncrotronsRESUMO
In this paper, we report X-ray absorption and core-level electron spectra of the nucleobase derivative 2-thiouracil at the sulfur L1- and L2,3-edges. We used soft X-rays from the free-electron laser FLASH2 for the excitation of isolated molecules and dispersed the outgoing electrons with a magnetic bottle spectrometer. We identified photoelectrons from the 2p core orbital, accompanied by an electron correlation satellite, as well as resonant and non-resonant Coster-Kronig and Auger-Meitner emission at the L1- and L2,3-edges, respectively. We used the electron yield to construct X-ray absorption spectra at the two edges. The experimental data obtained are put in the context of the literature currently available on sulfur core-level and 2-thiouracil spectroscopy.
Assuntos
Lasers , Enxofre/química , Tiouracila/química , Elétrons , Espectroscopia FotoeletrônicaRESUMO
The photoinduced relaxation dynamics of nucleobases and their thionated analogs have been investigated extensively over the past decades motivated by their crucial role in organisms and their application in medical and biochemical research and treatment. Most of these studies focused on the spectroscopy of valence electrons and fragmentation. The advent of ultrashort x-ray laser sources such as free-electron lasers, however, opens new opportunities for studying the ultrafast molecular relaxation dynamics utilizing the site- and element-selectivity of x-rays. In this review, we want to summarize ultrafast experiments on thymine and 2-thiouracil performed at free-electron lasers. We performed time-resolved x-ray absorption spectroscopy at the oxygen K-edge after UV excitation of thymine. In addition, we investigated the excited state dynamics of 2-tUra via x-ray photoelectron spectroscopy at sulfur. For these methods, we show a strong sensitivity to the electronic state or charge distribution, respectively. We also performed time-resolved Auger-Meitner spectroscopy, which shows spectral shifts associated with internuclear distances close to the probed site. We discuss the complementary aspects of time-resolved x-ray spectroscopy techniques compared to optical and UV spectroscopy for the investigation of ultrafast relaxation processes.
RESUMO
We present real-world data processing on measured electron time-of-flight data via neural networks. Specifically, the use of disentangled variational autoencoders on data from a diagnostic instrument for online wavelength monitoring at the free electron laser FLASH in Hamburg. Without a-priori knowledge the network is able to find representations of single-shot FEL spectra, which have a low signal-to-noise ratio. This reveals, in a directly human-interpretable way, crucial information about the photon properties. The central photon energy and the intensity as well as very detector-specific features are identified. The network is also capable of data cleaning, i.e. denoising, as well as the removal of artefacts. In the reconstruction, this allows for identification of signatures with very low intensity which are hardly recognisable in the raw data. In this particular case, the network enhances the quality of the diagnostic analysis at FLASH. However, this unsupervised method also has the potential to improve the analysis of other similar types of spectroscopy data.