Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dermatology ; 237(2): 283-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32799209

RESUMO

BACKGROUND: The thioredoxin-interacting protein (TXNIP) is involved in cellular metabolism and cell proliferation, and recently, deficient expression of TXNIP has been associated with progression and poor outcome for cancer patients. OBJECTIVES: To assess TXNIP expression and function in malignant T cells from cutaneous T-cell lymphoma (CTCL). METHODS: CTCL-derived malignant (MyLa2059, PB2B) and non-malignant (MyLa1850) cell lines were analysed by Western blotting and qPCR for TXNIP expression. Subsequently, the malignant CTCL cell lines were treated with GSK126 - an inhibitor of enhancer of zeste homolog 2 (EZH2) methyltransferase activity or assessed by bisulphite sequencing for TXNIP promoter methylation. Methylation was also assessed with the demethylating agent 5-azacytidine (5AZA). Finally, TXNIP was overexpressed in the malignant PB2B cell line via plasmid transduction, and the effect of TXNIP was further analysed by flow cytometry. RESULTS: We report on low expression of TXNIP protein in all cell lines representing different subtypes and stages of CTCL when compared to non-malignant T cells. Epigenetic silencing and other mechanisms were involved in the repression of TXNIP whereas forced expression of TXNIP strongly inhibited proliferation of malignant T cells. CONCLUSIONS: Epigenetic silencing and other as yet unknown mechanisms repress TXNIP expression in malignant T cells. As forced expression of TXNIP inhibits malignant proliferation, we propose that TXNIP is a putative tumour suppressor in CTCL.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Inativação Gênica , Humanos , Indóis/farmacologia , Regiões Promotoras Genéticas , Piridonas/farmacologia
2.
Int Immunol ; 27(8): 393-404, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25920998

RESUMO

The CD3γ di-leucine-based (diL) receptor-sorting motif plays a central role in TCR down-regulation and in clonal expansion of virus-specific T cells. However, the role of the CD3γ diL motif in T-cell development is not known. In this study, we show that protein kinase C-induced TCR down-regulation is abolished in thymocytes from CD3γLLAA mice with a mutated CD3γ diL motif, and that CD3γLLAA mice have reduced numbers of thymocytes compared with aged-matched wild-type mice. We found that early thymocyte development at the ß-selection checkpoint is impaired resulting in reduced numbers of double negative (DN) 4 cells in CD3γLLAA mice. This was not caused by reduced proliferation but most probably by increased down-regulation of the antiapoptotic molecule Bcl-2 causing enhanced apoptosis during the transition from the DN3 to the DN4 stage. In contrast, proliferation of immature CD8 single positive (ISP) thymocytes was increased resulting in normal numbers of ISP in CD3γLLAA mice. Despite the normal numbers of ISP, CD3γLLAA mice had reduced numbers of double positive and SP thymocytes indicating that the CD3γ diL motif also affected later stages of T-cell development. In accordance, we found that positive and negative selection, differentiation toward CD4 and CD8 SP T cells and the development of nonconventional T cells were affected in CD3γLLAA mice. In conclusion, our study identifies an important role of the CD3γ diL motif in T-cell development most probably mediated by its fine-tuning of pre-TCR and TCR expression, down-regulation and signaling.


Assuntos
Alanina/metabolismo , Complexo CD3/genética , Leucina/metabolismo , Timócitos/imunologia , Alanina/imunologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Apoptose , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD8/genética , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Proliferação de Células , Células Clonais , Regulação da Expressão Gênica , Imunofenotipagem , Leucina/imunologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Transdução de Sinais , Timócitos/citologia
3.
Sci Rep ; 9(1): 16725, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723203

RESUMO

In addition to antigen-driven signals, T cells need co-stimulatory signals for robust activation. Several receptors, including members of the tumor necrosis factor receptor superfamily (TNFRSF), can deliver co-stimulatory signals to T cells. Thioredoxin interacting protein (TXNIP) is an important inhibitor of glucose uptake and cell proliferation, but it is unknown how TXNIP is regulated in T cells. The aim of this study was to determine expression levels and regulation of TXNIP in human T cells. We found that naïve T cells express high levels of TXNIP and that treatment of blood samples with TNF results in rapid down-regulation of TXNIP in the T cells. TNF-induced TXNIP down-regulation correlated with increased glucose uptake. Furthermore, we found that density gradient centrifugation (DGC) induced down-regulation of TXNIP. We demonstrate that DGC induced TNF production that paralleled the TXNIP down-regulation. Treatment of blood with toll-like receptor (TLR) ligands induced TNF production and TXNIP down-regulation, suggesting that damage-associated molecular patterns (DAMPs), such as endogenous TLR ligands, released during DGC play a role in DGC-induced TXNIP down-regulation. Finally, we demonstrate that TNF-induced TXNIP down-regulation is dependent on caspase activity and is caused by caspase-mediated cleavage of TXNIP.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Glucose/metabolismo , Linfócitos T/metabolismo , Receptores Toll-Like/agonistas , Fator de Necrose Tumoral alfa/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação para Baixo , Humanos , Linfócitos T/efeitos dos fármacos
4.
Front Immunol ; 8: 656, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620394

RESUMO

Tuberculosis (TB) presents a serious health problem with approximately one-third of the world's population infected with Mycobacterium tuberculosis in a latent state. Experience from the pre-antibiotic era and more recent clinical studies have established a beneficial role of sunlight and vitamin D in patients with TB. At the same time, experimental data have shown that Th1 cells through production of IFNγ are crucial for cathelicidin release by macrophages, bacterial killing, and containment of M. tuberculosis in granulomas. Paradoxically, vitamin D has repeatedly been ascribed an immune-suppressive function inhibiting Th1 differentiation and production of IFNγ in T cells. The aim of this study was to investigate this apparent paradox. We studied naïve human CD4+ T cells activated either with CD3 and CD28 antibodies or with allogeneic dendritic cells (DC) stimulated with heat-killed M. tuberculosis (HKMT) or purified toll-like receptor (TLR) ligands. We show that vitamin D does not block differentiation of human CD4+ T cells to Th1 cells and that interleukin (IL)-12 partially counteracts vitamin D-mediated inhibition of IFNγ production promoting production of equal amounts of IFNγ in Th1 cells in the presence of vitamin D as in T cells activated in the absence of vitamin D and IL-12. Furthermore, we show that HKMT and TLR2 ligands strongly downregulate cathelicidin expression in DC and that vitamin D counteracts this by upregulating cathelicidin expression. In conclusion, we demonstrate that vitamin D counteracts M. tuberculosis-induced cathelicidin downregulation and allows Th1 differentiation and IFNγ secretion.

5.
Oncotarget ; 6(26): 21853-64, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26392411

RESUMO

Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Cistina/metabolismo , Cistina/farmacologia , DNA/biossíntese , Glutationa/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Glutationa/biossíntese , Humanos , Células Jurkat , Ativação Linfocitária , Ribonucleotídeo Redutases/metabolismo , Tiorredoxinas/metabolismo
6.
APMIS ; 123(8): 682-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25924778

RESUMO

We have recently shown that the E3 ubiquitin ligase midline 1 (MID1) is upregulated in murine cytotoxic lymphocytes (CTL), where it controls exocytosis of lytic granules and the killing capacity. Accordingly, CTL from MID1 knock-out (MID1(-/-)) mice have a 25-30% reduction in exocytosis of lytic granules and cytotoxicity compared to CTL from wild-type (WT) mice. We wondered why the MID1 gene knock-out did not affect exocytosis and cytotoxicity more severely and speculated whether MID2, a close homologue of MID1, might partially compensate for the loss of MID1 in MID1(-/-) CTL. Here, we showed that MID2, like MID1, is upregulated in activated murine T cells. Furthermore, MID1(-/-) CTL upregulated MID2 two-twenty-fold stronger than CTL from WT mice, suggesting that MID2 might compensate for MID1. In agreement, transfection of MID2 into MID1(-/-) CTL completely rescued exocytosis of lytic granules in MID1(-/-) CTL, and vice versa, knock-down of MID2 inhibited exocytosis of lytic granules in both WT and MID1(-/-) CTL, demonstrating that both MID1 and MID2 play a central role in the regulation of granule exocytosis and that functional redundancy exists between MID1 and MID2 in CTL.


Assuntos
Exocitose , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/metabolismo , Linfócitos T Citotóxicos/citologia , Fatores de Transcrição/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Interferon gama/sangue , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases , Regulação para Cima
7.
PLoS One ; 9(5): e96695, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24792400

RESUMO

The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR by protecting it from proteasomal degradation. Finally, we demonstrate that proteasome inhibition leads to up-regulation of VDR protein expression and increases 1,25(OH)2D3-induced gene activation. In conclusion, our study shows that activated CD4+ T cells can produce 1,25(OH)2D3, and that 1,25(OH)2D3 induces a 2-fold up-regulation of the VDR protein expression in activated CD4+ T cells by protecting the VDR against proteasomal degradation.


Assuntos
Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Calcitriol/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Calcitriol/metabolismo , Antifúngicos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Inibidores do Citocromo P-450 CYP3A/farmacologia , Ácidos Graxos Insaturados/farmacologia , Humanos , Cetoconazol/farmacologia , Ativação Linfocitária , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Receptores de Calcitriol/genética , Receptores de Calcitriol/imunologia , Regulação para Cima/efeitos dos fármacos
8.
Front Immunol ; 4: 148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785369

RESUMO

The vitamin D receptor (VDR) is a nuclear, ligand-dependent transcription factor that in complex with hormonally active vitamin D, 1,25(OH)2D3, regulates the expression of more than 900 genes involved in a wide array of physiological functions. The impact of 1,25(OH)2D3-VDR signaling on immune function has been the focus of many recent studies as a link between 1,25(OH)2D3 and susceptibility to various infections and to development of a variety of inflammatory diseases has been suggested. It is also becoming increasingly clear that microbes slow down immune reactivity by dysregulating the VDR ultimately to increase their chance of survival. Immune modulatory therapies that enhance VDR expression and activity are therefore considered in the clinic today to a greater extent. As T cells are of great importance for both protective immunity and development of inflammatory diseases a variety of studies have been engaged investigating the impact of VDR expression in T cells and found that VDR expression and activity plays an important role in both T cell development, differentiation and effector function. In this review we will analyze current knowledge of VDR regulation and function in T cells and discuss its importance for immune activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA