Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 137(7): 1272-81, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19563759

RESUMO

Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.


Assuntos
Algoritmos , Escherichia coli/genética , Aumento da Imagem/métodos , Luz , Gráficos por Computador , Modelos Teóricos
2.
Nature ; 461(7266): 997-1001, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19749742

RESUMO

Genetically encodable optical reporters, such as green fluorescent protein, have revolutionized the observation and measurement of cellular states. However, the inverse challenge of using light to control precisely cellular behaviour has only recently begun to be addressed; semi-synthetic chromophore-tethered receptors and naturally occurring channel rhodopsins have been used to perturb directly neuronal networks. The difficulty of engineering light-sensitive proteins remains a significant impediment to the optical control of most cell-biological processes. Here we demonstrate the use of a new genetically encoded light-control system based on an optimized, reversible protein-protein interaction from the phytochrome signalling network of Arabidopsis thaliana. Because protein-protein interactions are one of the most general currencies of cellular information, this system can, in principle, be generically used to control diverse functions. Here we show that this system can be used to translocate target proteins precisely and reversibly to the membrane with micrometre spatial resolution and at the second timescale. We show that light-gated translocation of the upstream activators of Rho-family GTPases, which control the actin cytoskeleton, can be used to precisely reshape and direct the cell morphology of mammalian cells. The light-gated protein-protein interaction that has been optimized here should be useful for the design of diverse light-programmable reagents, potentially enabling a new generation of perturbative, quantitative experiments in cell biology.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Luz , Fitocromo B/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Forma Celular/efeitos da radiação , Cor , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Raios Infravermelhos , Cinética , Camundongos , Células NIH 3T3 , Fotoquímica , Ligação Proteica/efeitos da radiação , Transporte Proteico/efeitos da radiação , Especificidade por Substrato/efeitos da radiação , Fatores de Tempo
3.
J Neurosci ; 30(45): 14998-5004, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068304

RESUMO

This mini-symposium aims to provide an integrated perspective on recent developments in optogenetics. Research in this emerging field combines optical methods with targeted expression of genetically encoded, protein-based probes to achieve experimental manipulation and measurement of neural systems with superior temporal and spatial resolution. The essential components of the optogenetic toolbox consist of two kinds of molecular devices: actuators and reporters, which respectively enable light-mediated control or monitoring of molecular processes. The first generation of genetically encoded calcium reporters, fluorescent proteins, and neural activators has already had a great impact on neuroscience. Now, a second generation of voltage reporters, neural silencers, and functionally extended fluorescent proteins hold great promise for continuing this revolution. In this review, we will evaluate and highlight the limitations of presently available optogenic tools and discuss where these technologies and their applications are headed in the future.


Assuntos
Corantes Fluorescentes , Engenharia Genética/métodos , Neurociências
4.
Nature ; 438(7067): 441-2, 2005 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-16306980

RESUMO

We have designed a bacterial system that is switched between different states by red light. The system consists of a synthetic sensor kinase that allows a lawn of bacteria to function as a biological film, such that the projection of a pattern of light on to the bacteria produces a high-definition (about 100 megapixels per square inch), two-dimensional chemical image. This spatial control of bacterial gene expression could be used to 'print' complex biological materials, for example, and to investigate signalling pathways through precise spatial and temporal control of their phosphorylation steps.


Assuntos
Biologia , Escherichia coli/fisiologia , Escherichia coli/efeitos da radiação , Engenharia Genética , Luz , Fotografação/métodos , Fitocromo/metabolismo , Ágar , Cor , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Genes Reporter/genética , Histidina Quinase , Óperon Lac/genética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Ficobilinas , Ficocianina/biossíntese , Ficocianina/metabolismo , Fitocromo/química , Fitocromo/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tetrapirróis/biossíntese , Tetrapirróis/metabolismo
5.
J Mol Biol ; 405(2): 315-24, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21035461

RESUMO

Light is a powerful tool for manipulating living cells because it can be applied with high resolution across space and over time. We previously constructed a red light-sensitive Escherichia coli transcription system based on a chimera between the red/far-red switchable cyanobacterial phytochrome Cph1 and the E. coli EnvZ/OmpR two-component signaling pathway. Here, we report the development of a green light-inducible transcription system in E. coli based on a recently discovered green/red photoswitchable two-component system from cyanobacteria. We demonstrate that the transcriptional output is proportional to the intensity of green light applied and that the green sensor is orthogonal to the red sensor at intensities of 532-nm light less than 0.01 W/m(2). Expression of both sensors in a single cell allows two-color optical control of transcription both in batch culture and in patterns across a lawn of engineered cells. Because each sensor functions as a photoreversible switch, this system should allow the spatial and temporal control of the expression of multiple genes through different combinations of light wavelengths. This feature aids precision single-cell and population-level studies in systems and synthetic biology.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Luz , Fitocromo/metabolismo , Cianobactérias/genética , Escherichia coli/efeitos da radiação , Genes Reporter , Transdução de Sinais , Ativação Transcricional/efeitos da radiação
6.
J Mol Biol ; 377(1): 47-61, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18242639

RESUMO

Bacterial pathogenesis requires the precise spatial and temporal control of gene expression, the dynamics of which are controlled by regulatory networks. A network encoded within Salmonella Pathogenicity Island 1 controls the expression of a type III protein secretion system involved in the invasion of host cells. The dynamics of this network are measured in single cells using promoter-green fluorescent protein (gfp) reporters and flow cytometry. During induction, there is a temporal order of gene expression, with transcriptional inputs turning on first, followed by structural and effector genes. The promoters show varying stochastic properties, where graded inputs are converted into all-or-none and hybrid responses. The relaxation dynamics are measured by shifting cells from inducing to noninducing conditions and by measuring fluorescence decay. The gfp expressed from promoters controlling the transcriptional inputs (hilC and hilD) and structural genes (prgH) decay exponentially, with a characteristic time of 50-55 min. In contrast, the gfp expressed from a promoter controlling the expression of effectors (sicA) persists for 110+/-9 min. This promoter is controlled by a genetic circuit, formed by a transcription factor (InvF), a chaperone (SicA), and a secreted protein (SipC), that regulates effector expression in response to the secretion capacity of the cell. A mathematical model of this circuit demonstrates that the delay is due to a split positive feedback loop. This model is tested in a DeltasicA knockout strain, where sicA is complemented with and without the feedback loop. The delay is eliminated when the feedback loop is deleted. Furthermore, a robustness analysis of the model predicts that the delay time can be tuned by changing the affinity of SicA:InvF multimers for an operator in the sicA promoter. This prediction is used to construct a targeted library, which contains mutants with both longer and shorter delays. This combination of theory and experiments provides a platform for predicting how genetic perturbations lead to changes in the global dynamics of a regulatory network.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Ilhas Genômicas/genética , Salmonella/genética , Salmonella/patogenicidade , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Evolução Biológica , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Teste de Complementação Genética , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Mutação/genética , Plasmídeos , Regiões Promotoras Genéticas/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA