Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7927): 485-489, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104551

RESUMO

The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials1,2. For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions3-6. However, accessing longer-range couplings has remained elusive experimentally7. This marks the frontier towards the extended Bose-Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings8-12. Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sites then stabilize an insulating state at half filling. This characteristic feature of the extended Bose-Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.

2.
Rep Prog Phys ; 86(9)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37489874

RESUMO

Strong-laser-field physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging from fundamental tests of quantum theory to quantum information processing. Despite the tremendous progress, until recently these directions have remained disconnected. This is because the majority of the interactions in the strong-field limit have been successfully described by semi-classical approximations treating the electromagnetic field classically, as there was no need to include the quantum properties of the field to explain the observations. The link between strong-laser-field physics, quantum optics, and quantum information science has been developed in the recent past. Studies based on fully quantized and conditioning approaches have shown that intense laser-matter interactions can be used for the generation of controllable entangled and non-classical light states. These achievements open the way for a vast number of investigations stemming from the symbiosis of strong-laser-field physics, quantum optics, and quantum information science. Here, after an introduction to the fundamentals of these research directions, we report on the recent progress in the fully quantized description of intense laser-matter interaction and the methods that have been developed for the generation of non-classical light states and entangled states. Also, we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science.

3.
Faraday Discuss ; 228(0): 394-412, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33591304

RESUMO

We investigate the discrete orbital angular momentum (OAM) of photoelectrons freed in strong-field ionization. We use these 'twisted' electrons to provide an alternative interpretation on existing experimental work of vortex interferences caused by strong field ionization mediated by two counter-rotating circularly polarized pulses separated by a delay. Using the strong field approximation, we derive an interference condition for the vortices. In computations for a neon target we find very good agreement of the vortex condition with photoelectron momentum distributions computed with the strong field approximation, as well as with the time-dependent methods Qprop and R-Matrix. For each of these approaches we examine the OAM of the photoelectrons, finding a small number of vortex states localized in separate energy regions. We demonstrate that the vortices arise from the interference of pairs of twisted electron states. The OAM of each twisted electron state can be directly related to the number of arms of the spiral in that region. We gain further understanding by recreating the vortices with pairs of twisted electrons and use this to determine a semiclassical relation for the OAM. A discussion is included on measuring the OAM in strong field ionization directly or by employing specific laser pulse schemes as well as utilizing the OAM in time-resolved imaging of photo-induced dynamics.

4.
Phys Rev Lett ; 125(26): 265301, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449765

RESUMO

We study the Z_{2} Bose-Hubbard model, a chain of interacting bosons the tunneling of which is dressed by a dynamical Z_{2} field. The interplay between spontaneous symmetry breaking (SSB) and topological symmetry protection gives rise to interesting fractional topological phenomena when the system is doped to certain incommensurate fillings. In particular, we hereby show how topological defects in the Z_{2} field can appear in the ground state, connecting different SSB sectors. These defects are dynamical and can travel through the lattice carrying both a topological charge and a fractional particle number. In the hardcore limit, this phenomenon can be understood through a bulk-defect correspondence. Using a pumping argument, we show that it survives also for finite interactions, demonstrating how boson fractionalization induced by topological defects can occur in strongly correlated bosonic systems. Our results indicate the possibility of observing this phenomenon, which appears for fermionic matter in solid-state and high-energy physics, using ultracold atomic systems.

5.
Phys Rev Lett ; 123(10): 100507, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573313

RESUMO

We consider the characterization of entanglement depth in a quantum many-body system from the device-independent perspective; that is, we aim at certifying how many particles are genuinely entangled without relying on assumptions on the system itself nor on the measurements performed. We obtain device-independent witnesses of entanglement depth (DIWEDs) using the Bell inequalities introduced in [J. Tura et al., Science 344, 1256 (2014)SCIEAS0036-807510.1126/science.1247715] and compute their k-producibility bounds. To this end, we exploit two complementary methods: first, a variational one, yielding a possibly optimal k-producible state; second, a certificate of optimality via a semidefinite program, based on a relaxation of the quantum marginal problem. Numerical results suggest a clear pattern on k-producible bounds for large system sizes, which we then tackle analytically in the thermodynamic limit. Contrary to existing DIWEDs, the ones we present here can be effectively measured by accessing only collective measurements and second moments thereof. These technical requirements are met in current experiments, which have already been performed in the context of detecting Bell correlations in quantum many-body systems of 5×10^{2}-5×10^{5} atoms.

6.
Rep Prog Phys ; 80(5): 054401, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28059773

RESUMO

Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond = 1 as = 10-18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.

7.
Opt Express ; 25(13): 14974-14985, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788933

RESUMO

Plasmon resonances are known to amplify the electromagnetic fields near metallic nanostructures, providing a promising scheme to generate extreme-ultraviolet harmonics using low power drivings. During high-order harmonic generation (HHG), the driving and harmonic fields accumulate a phase difference as they propagate through the target. In a typical set-up -a laser focused into a gas jet- the propagation distances amount to several wavelengths, and the cumulative phase-mismatch affects strongly the efficiency and properties of the harmonic emission. In contrast, HHG in metallic nanostructures is considered to overcome these limitations, as the common sources of phase mismatch -optical density and focusing geometry- are negligible for subwavelength propagation distances. We demonstrate that phase matching still plays a relevant role in HHG from nanostructures due to the non-perturbative character of HHG, that links the harmonic phase to the intensity distribution of the driving field. Our computations show that widely used applications of phase matching control, such as quantum path selection and the increase of contrast in attosecond pulse generation, are also feasible at the nanoscale.

8.
Phys Rev Lett ; 119(5): 053204, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949751

RESUMO

Studies of strong field ionization have historically relied on the strong field approximation, which neglects all spatial dependence in the forces experienced by the electron after ionization. More recently, the small spatial inhomogeneity introduced by the long-range Coulomb potential has been linked to a number of important features in the photoelectron spectrum, such as Coulomb asymmetry, Coulomb focusing, and the low energy structure. Here, we demonstrate using midinfrared laser wavelength that a time-varying spatial dependence in the laser electric field, such as that produced in the vicinity of a nanostructure, creates a prominent higher energy peak. This higher energy structure (HES) originates from direct electrons ionized near the peak of a single half-cycle of the laser pulse. The HES is separated from all other ionization events, with its location and width highly dependent on the strength of spatial inhomogeneity. Hence, the HES can be used as a sensitive tool for near-field characterization in the "intermediate regime," where the electron's quiver amplitude is comparable to the field decay length. Moreover, the large accumulation of electrons with tuneable energy suggests a promising method for creating a localized source of electron pulses of attosecond duration using tabletop laser technology.

9.
Phys Rev Lett ; 116(24): 240405, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367369

RESUMO

Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

10.
Phys Rev Lett ; 116(7): 070402, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943512

RESUMO

We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.

11.
Phys Rev Lett ; 114(14): 143902, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910125

RESUMO

We present a theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2π and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors.

12.
Phys Rev Lett ; 112(4): 043001, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580445

RESUMO

We describe a simple technique for generating a cold-atom lattice pierced by a uniform magnetic field. Our method is to extend a one-dimensional optical lattice into the "dimension" provided by the internal atomic degrees of freedom, yielding a synthetic two-dimensional lattice. Suitable laser coupling between these internal states leads to a uniform magnetic flux within the two-dimensional lattice. We show that this setup reproduces the main features of magnetic lattice systems, such as the fractal Hofstadter-butterfly spectrum and the chiral edge states of the associated Chern insulating phases.

13.
Phys Rev Lett ; 112(15): 150603, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785018

RESUMO

Nonergodicity observed in single-particle tracking experiments is usually modeled by transient trapping rather than spatial disorder. We introduce models of a particle diffusing in a medium consisting of regions with random sizes and random diffusivities. The particle is never trapped but rather performs continuous Brownian motion with the local diffusion constant. Under simple assumptions on the distribution of the sizes and diffusivities, we find that the mean squared displacement displays subdiffusion due to nonergodicity for both annealed and quenched disorder. The model is formulated as a walk continuous in both time and space, similar to the Lévy walk.

14.
Rep Prog Phys ; 76(9): 096001, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24006352

RESUMO

The concentration and distribution of quantum entanglement is an essential ingredient in emerging quantum information technologies. Much theoretical and experimental effort has been expended in understanding how to distribute entanglement in one-dimensional networks. However, as experimental techniques in quantum communication develop, protocols for multi-dimensional systems become essential. Here, we focus on recent theoretical developments in protocols for distributing entanglement in regular and complex networks, with particular attention to percolation theory and network-based error correction.


Assuntos
Algoritmos , Modelos Químicos , Modelos Estatísticos , Teoria Quântica , Simulação por Computador
15.
Phys Rev Lett ; 110(9): 096405, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496733

RESUMO

As a minimal fermionic model with kinetic frustration, we study a system of spinless fermions in the lowest band of a triangular lattice with nearest-neighbor repulsion. We find that the combination of interactions and kinetic frustration leads to spontaneous symmetry breaking in various ways. Time-reversal symmetry can be broken by two types of loop current patterns, a chiral one and one that breaks the translational lattice symmetry. Moreover, the translational symmetry can also be broken by a density wave forming a kagome pattern or by a Peierls-type trimerization characterized by enhanced correlations among the sites of certain triangular plaquettes (giving a plaquette-centered density wave). We map out the phase diagram as it results from leading-order Ginzburg-Landau mean-field theory. Several experimental realizations of the type of system under study are possible with ultracold atoms in optical lattices.

16.
Phys Rev Lett ; 110(5): 053001, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23414015

RESUMO

We present numerical simulations of high-order harmonic generation in helium using a temporally synthesized and spatially nonhomogeneous strong laser field. The combination of temporal and spatial laser field synthesis results in a dramatic cutoff extension far beyond the usual semiclassical limit. Our predictions are based on the convergence of three complementary approaches: resolution of the three dimensional time dependent Schrödinger equation, time-frequency analysis of the resulting dipole moment, and classical trajectory extraction. A laser field synthesized both spatially and temporally has been proven capable of generating coherent extreme ultraviolet photons beyond the carbon K edge, an energy region of high interest as it can be used to initiate inner-shell dynamics and study time-resolved intramolecular attosecond spectroscopy.

17.
Phys Rev Lett ; 110(25): 250402, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23829716

RESUMO

We report on the detailed study of multicomponent spin waves in an s=3/2 Fermi gas where the high spin leads to novel tensorial degrees of freedom compared to s=1/2 systems. The excitations of a spin-nematic state are investigated from the linear to the nonlinear regime, where the tensorial character is particularly pronounced. By tuning the initial state we engineer the tensorial spin-wave character, such that the magnitude and the sign of the counterflow spin currents are effectively controlled. A comparison of our data with numerical and analytical results shows good agreement.

18.
Opt Express ; 20(24): 26261-74, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187480

RESUMO

We study high-order harmonic generation (HHG) resulting from the illumination of plasmonic nanostructures with a short laser pulse of long wavelength. We demonstrate that both the confinement of the electron motion and the inhomogeneous character of the laser electric field play an important role in the HHG process and lead to a significant increase of the harmonic cutoff. In particular, in bow-tie nanostructures with small gaps, electron trajectories with large excursion amplitudes experience significant confinement and their contribution is essentially suppressed. In order to understand and characterize this feature, we combine the numerical solution of the time-dependent Schrödinger equation (TDSE) with the electric fields obtained from 3D finite element simulations. We employ time-frequency analysis to extract more detailed information from the TDSE results and classical tools to explain the extended harmonic spectra. The spatial inhomogeneity of the laser electric field modifies substantially the electron trajectories and contributes also to cutoff increase.


Assuntos
Simulação por Computador , Luz , Modelos Químicos , Nanoestruturas/química , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/métodos , Humanos
19.
Opt Lett ; 37(10): 1715-7, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22627547

RESUMO

We report Anderson localization in two-dimensional optical waveguide arrays with disorder in waveguide separation introduced along one axis of the array, in an uncorrelated fashion for each waveguide row. We show that the anisotropic nature of such disorder induces a strong localization along both array axes. The degree of localization in the cross-axis remains weaker than that in the direction in which disorder is introduced. This effect is illustrated both theoretically and experimentally.

20.
Phys Rev Lett ; 109(23): 237208, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368261

RESUMO

We investigate the entanglement spectrum near criticality in finite quantum spin chains. Using finite size scaling we show that when approaching a quantum phase transition, the Schmidt gap, i.e., the difference between the two largest eigenvalues of the reduced density matrix λ(1), λ(2), signals the critical point and scales with universal critical exponents related to the relevant operators of the corresponding perturbed conformal field theory describing the critical point. Such scaling behavior allows us to identify explicitly the Schmidt gap as a local order parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA