RESUMO
Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in ß-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS ß-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS ß-cells. Consistent with reduced ER chaperones levels, PWS INS-1 ß-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS ß-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic ß-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and ß-cell secretory pathway function.
Assuntos
Síndrome de Prader-Willi , Camundongos , Animais , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Secreção de Insulina/genética , Chaperona BiP do Retículo Endoplasmático , Regulação para Baixo , Proteômica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Insulina/genética , Insulina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismoRESUMO
Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumor cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66- is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance.
Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Separação Celular , Instabilidade Cromossômica , Células Clonais , Células Alimentadoras/citologia , Feminino , Imunofluorescência , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e PescoçoRESUMO
Oral squamous cell carcinoma (OSCC) is a serious public health problem caused primarily by smoking and alcohol consumption or human papillomavirus. The cancer stem cell (CSC) theory posits that CSCs show unique characteristics, including self-renewal and therapeutic resistance. Examining biomarkers and other features of CSCs is critical to better understanding their biology. To this end, the results show that cellular SOX2 immunostaining correlates with other CSC biomarkers in OSCC cell lines and marks the rare CSC population. To assess whether CSC division patterns are symmetrical, resulting in two CSC, or asymmetrical, leading to one CSC and one cancer cell, cell size and fluorescence intensity of mitotic cells stained with SOX2 were analyzed. Asymmetrical SOX2 distribution in ≈25% of the mitoses analyzed was detected. Chromosomal instability, some of which is caused by chromosome segregation defects (CSDs), is a feature of cancer cells that leads to altered gene copy numbers. We compare chromosomal instability (as measured by CSDs) between CSCs (SOX2+) and non-CSCs (SOX2-) from the same OSCC cell lines. CSDs were more common in non-CSCs (SOX2-) than CSCs (SOX2+) and in symmetrical CSC (SOX2+) mitotic pairs than asymmetrical CSC (SOX2+/SOX2-) mitotic pairs. CSCs showed fewer and different types of CSDs after ionizing radiation treatment than non-CSCs. Overall, these data are the first to demonstrate both symmetrical and asymmetrical cell divisions with CSDs in OSCC CSC. Further, the results suggest that CSCs may undergo altered behavior, including therapeutic resistance as a result of chromosomal instability due to chromosome segregation defects. © 2016 Wiley Periodicals, Inc.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Divisão Celular/genética , Segregação de Cromossomos/genética , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Divisão Celular/efeitos da radiação , Segregação de Cromossomos/efeitos da radiação , Imunofluorescência , Humanos , Raios Infravermelhos , Neoplasias Bucais/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Fatores de Transcrição SOXB1/metabolismo , Células Tumorais CultivadasRESUMO
Oral squamous cell carcinoma (OSCC), a subset of head and neck squamous cell carcinoma (HNSCC), is the eighth most common cancer in the U.S.. Amplification of chromosomal band 11q13 and its association with poor prognosis has been well established in OSCC. The first step in the breakage-fusion-bridge (BFB) cycle leading to 11q13 amplification involves breakage and loss of distal 11q. Distal 11q loss marked by copy number loss of the ATM gene is observed in 25% of all Cancer Genome Atlas (TCGA) tumors, including 48% of HNSCC. We showed previously that copy number loss of distal 11q is associated with decreased sensitivity (increased resistance) to ionizing radiation (IR) in OSCC cell lines. We hypothesized that this radioresistance phenotype associated with ATM copy number loss results from upregulation of the compensatory ATR-CHEK1 pathway, and that knocking down the ATR-CHEK1 pathway increases the sensitivity to IR of OSCC cells with distal 11q loss. Clonogenic survival assays confirmed the association between reduced sensitivity to IR in OSCC cell lines and distal 11q loss. Gene and protein expression studies revealed upregulation of the ATR-CHEK1 pathway and flow cytometry showed G2 M checkpoint arrest after IR treatment of cell lines with distal 11q loss. Targeted knockdown of the ATR-CHEK1 pathway using CHEK1 or ATR siRNA or a CHEK1 small molecule inhibitor (SMI, PF-00477736) resulted in increased sensitivity of the tumor cells to IR. Our results suggest that distal 11q loss is a useful biomarker in OSCC for radioresistance that can be reversed by ATR-CHEK1 pathway inhibition.
Assuntos
Carcinoma de Células Escamosas/genética , Cromossomos Humanos Par 11/genética , Neoplasias Bucais/genética , Proteínas Quinases/genética , Tolerância a Radiação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral/efeitos da radiação , Quinase 1 do Ponto de Checagem , Deleção Cromossômica , Segregação de Cromossomos , Dano ao DNA , Técnicas de Silenciamento de Genes , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Neoplasias Bucais/radioterapia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais , Regulação para CimaRESUMO
The ATR-CHEK1 pathway is upregulated and overactivated in Ataxia Telangiectasia (AT) cells, which lack functional ATM protein. Loss of ATM in AT confers radiosensitivity, although ATR-CHEK1 pathway overactivation compensates, leads to prolonged G(2) arrest after treatment with ionizing radiation (IR), and partially reverses the radiosensitivity. We observed similar upregulation of the ATR-CHEK1 pathway in a subset of oral squamous cell carcinoma (OSCC) cell lines with ATM loss. In the present study, we report copy number gain, amplification, or translocation of the ATR gene in 8 of 20 OSCC cell lines by FISH; whereas the CHEK1 gene showed copy number loss in 12 of 20 cell lines by FISH. Quantitative PCR showed overexpression of both ATR and CHEK1 in 7 of 11 representative OSCC cell lines. Inhibition of ATR or CHEK1 with their respective siRNAs resulted in increased sensitivity of OSCC cell lines to IR by the colony survival assay. siRNA-mediated ATR or CHEK1 knockdown led to loss of G(2) cell cycle accumulation and an increased sub-G(0) apoptotic cell population by flow cytometric analysis. In conclusion, the ATR-CHEK1 pathway is upregulated in a subset of OSCC with distal 11q loss and loss of the G(1) phase cell cycle checkpoint. The upregulated ATR-CHEK1 pathway appears to protect OSCC cells from mitotic catastrophe by enhancing the G(2) checkpoint. Knockdown of ATR and/or CHEK1 increases the sensitivity of OSCC cells to IR. These findings suggest that inhibition of the upregulated ATR-CHEK1 pathway may enhance the efficacy of ionizing radiation treatment of OSCC.
Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Proteínas Quinases/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 3/genética , Dano ao DNA/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Dosagem de Genes , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Bucais/metabolismo , Proteínas Quinases/metabolismo , Tolerância a Radiação , Transdução de Sinais , Translocação Genética , Regulação para CimaRESUMO
BACKGROUND: MYB RNA in situ hybridization (ISH) has emerged as a reliable and accessible marker to support adenoid cystic carcinoma (ACC) diagnosis, though still not well studied. Here, we report our results in a validation and prospective cohort to improve MYB RNA ISH diagnostic accuracy. METHODS: 79 cases (23 retrospective and 56 prospective) underwent MYB RNA ISH testing (44 ACC and 35 non-ACC). MYB RNA ISH results were initially interpreted based on previously established (original) scoring criteria. Weighted "i-scores", percent positive tumor cells, percent tumor cells with large signals (% LS), and staining pattern (abluminal, diffuse, focal non-patterned, or negative) were inputs for logistic regression models. Final model performance characteristics were compared with original scoring criteria and MYB::NFIB FISH results. RESULTS: An abluminal pattern was characteristic and exclusive to ACC. All i-scores, % LS, and percent positive were significantly higher in ACC. Original scoring criteria yielded a 95.5% sensitivity (Sn), 68.6% specificity (Sp), and 83.5% accuracy. MYB::NFIB FISH yielded a 42.9% sensitivity, 100% specificity, and 60% accuracy. Optimizing for performance, simplicity, and minimal collinearity, our final model was defined as: abluminal pattern and/or % LS > 16.5%, which resulted in a 93.2% Sn, 97.1% Sp, and 94.9% accuracy for ACC diagnosis. False negatives included an ACC with striking tubular eosinophilia and a MYBL1::NFIB translocated ACC. One false positive exclusive to the final model was a nasopharyngeal carcinoma with MYB amplification. CONCLUSIONS: MYB RNA ISH has a higher Sn than MYB::NFIB FISH while retaining high Sp. Our model provides improvements to specificity compared to original scoring criteria and highlight the importance of abluminal staining pattern and % LS. Nonetheless, alternate fusions remain key false negatives while rare non-ACC with other mechanisms of MYB activation may present as false positives.
Assuntos
Biomarcadores Tumorais , Carcinoma Adenoide Cístico , Proteínas Proto-Oncogênicas c-myb , Sensibilidade e Especificidade , Humanos , Carcinoma Adenoide Cístico/diagnóstico , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Proteínas Proto-Oncogênicas c-myb/genética , Feminino , Pessoa de Meia-Idade , Masculino , Idoso , Adulto , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Estudos Retrospectivos , Hibridização In Situ/métodos , Estudos Prospectivos , Idoso de 80 Anos ou mais , Hibridização in Situ Fluorescente/métodos , Adulto JovemRESUMO
Etoposide is a widely used anticancer drug successfully used for the treatment of many types of cancer in children and adults. Its use, however, is associated with an increased risk of development of secondary acute myelogenous leukemia involving the mixed-lineage leukemia (MLL) gene (11q23) translocations. Previous studies demonstrated that the phenoxyl radical of etoposide can be produced by action of myeloperoxidase (MPO), an enzyme found in developing myeloid progenitor cells, the likely origin for myeloid leukemias. We hypothesized, therefore, that one-electron oxidation of etoposide by MPO to its phenoxyl radical is important for converting this anticancer drug to genotoxic and carcinogenic species in human CD34(+) myeloid progenitor cells. In the present study, using electron paramagnetic resonance spectroscopy, we provide conclusive evidence for MPO-dependent formation of etoposide phenoxyl radicals in growth factor-mobilized CD34(+) cells isolated from human umbilical cord blood and demonstrate that MPO-induced oxidation of etoposide is amplified in the presence of phenol. Formation of etoposide radicals resulted in the oxidation of endogenous thiols, thus providing evidence for etoposide-mediated MPO-catalyzed redox cycling that may play a role in enhanced etoposide genotoxicity. In separate studies, etoposide-induced DNA damage and MLL gene rearrangements were demonstrated to be dependent in part on MPO activity in CD34(+) cells. Together, our results are consistent with the idea that MPO-dependent oxidation of etoposide in human hematopoietic CD34(+) cells makes these cells especially prone to the induction of etoposide-related acute myeloid leukemia.
Assuntos
Antígenos CD34/metabolismo , Antineoplásicos Fitogênicos/metabolismo , Etoposídeo/metabolismo , Células Progenitoras Mieloides/metabolismo , Peroxidase/metabolismo , Ensaio Cometa , Espectroscopia de Ressonância de Spin Eletrônica , Citometria de Fluxo , Rearranjo Gênico , Guaiacol/metabolismo , Humanos , Immunoblotting , OxirreduçãoRESUMO
Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 µM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.
Assuntos
Fígado/metabolismo , Fenilalanina Hidroxilase/genética , Fenilalanina/genética , Fenilcetonúrias/genética , Adolescente , Adulto , Animais , Sistemas CRISPR-Cas/genética , Dieta , Modelos Animais de Doenças , Edição de Genes , Humanos , Fígado/efeitos dos fármacos , Fenótipo , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , SuínosRESUMO
The Consortium for Mouse Cell Line Authentication was formed to validate Short Tandem Repeat (STR) markers for intraspecies identification of mouse cell lines. The STR profiling method is a multiplex polymerase chain reaction (PCR) assay comprised of primers targeting 19 mouse STR markers and two human STR markers (for interspecies contamination screening). The goals of the Consortium were to perform an interlaboratory study to-(1) validate the mouse STR markers to uniquely identify mouse cell lines (intraspecies identification), (2) to provide a public database of mouse cell lines with the National Institute of Standards and Technology (NIST)-validated mouse STR profiles, and (3) to publish the results of the interlaboratory study. The interlaboratory study was an international effort that consisted of 12 participating laboratories representing institutions from academia, industry, biological resource centers, and government. The study was based on 50 of the most commonly used mouse cell lines obtained from the American Type Culture Collection (ATCC). Of the 50 mouse cell lines, 18 had unique STR profiles that were 100% concordant (match) among all Consortium laboratory members, and the remaining 32 cell lines had discordance that was resolved readily and led to improvement of the assay. The discordance was due to low signal and interpretation issues involving artifacts and genotyping errors. Although the total number of discordant STR profiles was relatively high in this study, the percent of labs agreeing on allele calls among the discordant samples was above 92%. The STR profiles, including electropherogram images, for NIST-validated mouse cell lines will be published on the NCBI BioSample Database (https://www.ncbi.nlm.nih.gov/biosample/). Overall, the interlaboratory study showed that the multiplex PCR method using 18 of the 19 mouse STR markers is capable of discriminating at the intraspecies level between mouse cell lines. Further studies are ongoing to refine the assay including (1) development of an allelic ladder for improving the accuracy of allele calling and (2) integration of stutter filters to identify true stutter.
Assuntos
Genótipo , Técnicas de Genotipagem/métodos , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Alelos , Animais , Linhagem Celular , Humanos , CamundongosRESUMO
Mechanisms underlying the reprogramming process of induced pluripotent stem cells remain poorly defined. Like tumorigenesis, generation of induced pluripotent stem cells was shown to be suppressed by the Trp53 (p53) pathway, at least in part via p21Cdkn1a (p21)-mediated cell cycle arrest. Here we examine the role of PUMA, a pro-apoptotic mediator of p53, during somatic reprogramming in comparison to p21 in the p53 pathway. Using mouse strains deficient in these molecules, we demonstrate that PUMA is an independent mediator of the negative effect of p53 on induced pluripotent stem cell induction. PUMA deficiency leads to a better survival rate associated with reduced DNA damage and fewer chromosomal aberrations in induced pluripotent stem cells, whereas loss of p21 or p53 results in an opposite outcome. Given these new findings, PUMA may serve as a distinct and more desirable target in the p53 pathway for induced pluripotent stem cell generation, thereby having important implications for potential therapeutic applications of induced pluripotent stem cells.
Assuntos
Proteínas Reguladoras de Apoptose/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas Reguladoras de Apoptose/deficiência , Biomarcadores/metabolismo , Ciclo Celular/genética , Diferenciação Celular , Linhagem da Célula/genética , Aberrações Cromossômicas , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Dano ao DNA , Embrião de Mamíferos , Feminino , Fibroblastos/citologia , Deleção de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Proteína Supressora de Tumor p53/deficiência , Proteínas Supressoras de Tumor/deficiênciaRESUMO
Human cancers have been found to include transformed stem cells that may drive cancer progression to metastasis. Here, we report that metastatic colon cancer contains clonally derived tumor cells with all of the critical properties expected of stem cells, including self-renewal and the ability to differentiate into mature colon cells. Additionally, when injected into mice, these cells initiated tumors that closely resemble human cancer. Karyotype analyses of parental and clonally derived tumor cells expressed many consistent (clonal) along with unique chromosomal aberrations, suggesting the presence of chromosomal instability in the cancer stem cells. Thus, this new model for cancer origin and metastatic progression includes features of both the hierarchical model for cancerous stem cells and the stochastic model, driven by the observation of chromosomal instability.