Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 404(Pt A): 124108, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33032090

RESUMO

Ag-modified vanadium silicate (EVS-Ag) has been regarded as a superior sorbent for elemental mercury (Hg0) capture from coal-fired flue gas. However, the atomic-level reaction mechanism which determines Hg0 adsorption capacity of EVS-Ag sorbent remains elusive. Reaction mechanism and active sites of Hg0 adsorption over EVS-Ag sorbent were studied using density functional theory (DFT) calculations systematically. DFT calculation results indicate that silver exchange shows little effects on the geometric structure of EVS-10 sorbent. Hg0 adsorption on EVS-10 and EVS-Ag surfaces is controlled by the physisorption and chemisorption mechanisms, respectively. Ag2 cluster is determined to be the most active site of Hg0 adsorption over Ag-modified EVS sorbent. The adsorption energy of Hg0 on Ag2 cluster is -51.93 kJ/mol. The orbital hybridization and electron sharing between Ag and Hg atoms are responsible for the strong interaction between EVS-Ag surface and Hg0. HgO prefers to adsorb on Ag2 cluster of EVS-Ag sorbent, and yields an energy release of 306.21 kJ/mol. HgO desorption from EVS-Ag sorbent surface needs a higher external energy, and occurs at the relatively higher temperatures. O2 molecule promotes Hg0 adsorption over EVS-Ag sorbent. HgO species can be easily formed during Hg0 adsorption over EVS-Ag sorbent in the presence of O2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA