Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 33(22): 1927-32, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22851305

RESUMO

Low-bandgap conjugated copolymers based on a donor-acceptor structure have been synthesised via palladium-complex catalysed direct arylation polymerisation. Initially, we report the optimisation of the synthesis of poly(cyclopentadithiophene-alt-benzothiadiazole) (PCPDTBT) formed between cyclopentadithiophene and dibromobenzothiadiazole units. The polymerisation condition has been optimised, which affords high-molecular-weight polymers of up to M(n) = 70 k using N-methylpyrrolidone as a solvent. The polymers are used to fabricate organic photovoltaic devices and the best performing PCPDTBT device exhibits a moderate improvement over devices fabricated using the related polymer via Suzuki coupling. Similar polymerisation conditions have also been applied for other monomer units.


Assuntos
Paládio/química , Polímeros/química , Energia Solar , Catálise , Peso Molecular , Polimerização , Pirrolidinonas/química , Tiadiazóis/química
3.
RSC Adv ; 11(26): 15738-15747, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35481169

RESUMO

A green synthesis method is proposed for the preparation of nitrogen-doped multiporous carbons (denoted as N-MPCs) from water-caltrop shell (WCS) using eggshell waste as both a nitrogen-dopant and an activating agent. It is shown that the surface area, porosity, yield and nitrogen content of the as-prepared N-MPCs can be easily controlled by adjusting the activation temperature. Moreover, in oxygen reduction reaction (ORR) tests performed in O2-saturated 0.1 M KOH(aq) electrolyte containing 1.0 M methanol, the N-MPC catalysts show a high ORR stability and good resistance to methanol corrosion. In addition, as a cathode material in Al-air battery tests, the N-MPCs achieve a power density of 16 mW g-1 in a saturated NaCl(aq) electrolyte. Overall, the results show that the N-MPCs have a promising potential as a green and sustainable material for ORR catalysis applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA