Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985498

RESUMO

ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L. Raf., also known as Citrus trifoliata L.), an elite cold-hardy plant. PtrERF110 is a nuclear protein with transcriptional activation activity. Overexpression of PtrERF110 remarkably enhanced cold tolerance in lemon (Citrus limon) and tobacco (Nicotiana tabacum), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrERF110 drastically impaired the cold tolerance. RNA sequence analysis revealed that PtrERF110 overexpression resulted in global transcriptional reprogramming of a range of stress-responsive genes. Three of the genes, including PtrERD6L16 (early responsive dehydration 6-like transporters), PtrSPS4 (sucrose phosphate synthase 4), and PtrUGT80B1 (UDP-glucose: sterol glycosyltransferases 80B1), were confirmed as direct targets of PtrERF110. Consistently, PtrERF110-overexpressing plants exhibited higher levels of sugars and sterols compared to their wild type counterparts, whereas the VIGS plants had an opposite trend. Exogenous supply of sucrose restored the cold tolerance of PtrERF110-silencing plants. In addition, knockdown of PtrSPS4, PtrERD6L16, and PtrUGT80B1 substantially impaired the cold tolerance of P. trifoliata. Taken together, our findings indicate that PtrERF110 positively modulates cold tolerance by directly regulating sugar and sterol synthesis through transcriptionally activating PtrERD6L16, PtrSPS4, and PtrUGT80B1. The regulatory modules (ERF110-ERD6L16/SPS4/UGT80B1) unraveled in this study advance our understanding of the molecular mechanisms underlying sugar and sterol accumulation in plants subjected to cold stress.

2.
Plant Physiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875157

RESUMO

Citrus is one of the most important fruit crop genera in the world, but many Citrus species are vulnerable to cold stress. Ichang papeda (Citrus ichangensis), a cold-hardy citrus species, holds great potential for identifying valuable metabolites that are critical for cold tolerance in Citrus. However, the metabolic changes and underlying mechanisms that regulate Ichang papeda cold tolerance remain largely unknown. In this study, we compared the metabolomes and transcriptomes of Ichang papeda and HB pummelo (Citrus grandis 'Hirado Buntan', a cold-sensitive species) to explore the critical metabolites and genes responsible for cold tolerance. Metabolomic analyses led to the identification of common and genotype-specific metabolites, consistent with transcriptomic alterations. Compared to HB pummelo under cold stress, Ichang papeda accumulated more sugars, flavonoids, and unsaturated fatty acids, which are well-characterized metabolites involved in stress responses. Interestingly, sphingosine and chlorogenic acid substantially accumulated only in Ichang papeda. Knockdown of CiSPT (C. ichangensis serine palmitoyltransferase) and CiHCT2 (C. ichangensis hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase2), two genes involved in sphingosine and chlorogenic acid biosynthesis, dramatically decreased endogenous sphingosine and chlorogenic acid levels, respectively. This reduction in sphingosine and chlorogenic acid notably compromised the cold tolerance of Ichang papeda, whereas exogenous application of these metabolites increased plant cold tolerance. Taken together, our findings indicate that greater accumulation of a spectrum of metabolites, particularly sphingosine and chlorogenic acid, promotes cold tolerance in cold-tolerant citrus species. These findings broaden our understanding of plant metabolic alterations in response to cold stress and provide valuable targets that can be manipulated to improve Citrus cold tolerance.

3.
Plant Cell ; 34(5): 1745-1767, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34791448

RESUMO

Primary metabolism provides energy for growth and development as well as secondary metabolites for diverse environmental responses. Here we describe an unexpected consequence of disruption of a glycolytic enzyme enolase named LOW EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 2 (LOS2) in causing constitutive defense responses or autoimmunity in Arabidopsis thaliana. The autoimmunity in the los2 mutant is accompanied by a higher expression of about one-quarter of intracellular immune receptor nucleotide-binding leucine-rich repeat (NLR) genes in the genome and is partially dependent on one of these NLR genes. The LOS2 gene was hypothesized to produce an alternatively translated protein c-Myc Binding Protein (MBP-1) that functions as a transcriptional repressor. Complementation tests show that LOS2 executes its function in growth and immunity regulation through the canonical enolase activity but not the production of MBP-1. In addition, the autoimmunity in the los2 mutants leads to a higher accumulation of sugars and organic acids and a depletion of glycolytic metabolites. These findings indicate that LOS2 does not exert its function in immune responses through an alternatively translated protein MBP-1. Rather, they show that a perturbation of glycolysis from the reduction of the enolase activity results in activation of NLR-involved immune responses which further influences primary metabolism and plant growth, highlighting the complex interaction between primary metabolism and plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glicólise/genética , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Imunidade Vegetal/genética
4.
Plant J ; 115(2): 434-451, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37025007

RESUMO

Plant A/T-rich protein and zinc-binding protein (PLATZ) transcription factors play important roles in plant growth, development and abiotic stress responses. However, how PLATZ influences plant drought tolerance remains poorly understood. The present study showed that PLATZ4 increased drought tolerance in Arabidopsis thaliana by causing stomatal closure. Transcriptional profiling analysis revealed that PLATZ4 affected the expression of a set of genes involved in water and ion transport, antioxidant metabolism, small peptides and abscisic acid (ABA) signaling. Among these genes, the direct binding of PLATZ4 to the A/T-rich sequences in the plasma membrane intrinsic protein 2;8 (PIP2;8) promoter was identified. PIP2;8 consistently reduced drought tolerance in Arabidopsis through inhibiting stomatal closure. PIP2;8 was localized in the plasma membrane, exhibited water channel activity in Xenopus laevis oocytes and acted epistatically to PLATZ4 in regulating the drought stress response in Arabidopsis. PLATZ4 increased ABA sensitivity through upregulating the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4 and ABI5. The transcripts of PLATZ4 were induced to high levels in vegetative seedlings under drought and ABA treatments within 6 and 3 h, respectively. Collectively, these findings reveal that PLATZ4 positively influences plant drought tolerance through regulating the expression of PIP2;8 and genes involved in ABA signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Resistência à Seca , Aquaporina 2/genética , Aquaporina 2/metabolismo , Plantas Geneticamente Modificadas/genética , Secas , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Estômatos de Plantas/fisiologia
5.
Plant Physiol ; 191(1): 591-609, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102815

RESUMO

ß-Amylase (BAM)-mediated starch degradation is a main source of soluble sugars that help plants adapt to environmental stresses. Here, we demonstrate that dehydration-induced expression of PtrBAM3 in trifoliate orange (Poncirus trifoliata (L.) Raf.) functions positively in drought tolerance via modulation of starch catabolism. Two transcription factors, PtrABF4 (P. trifoliata abscisic acid-responsive element-binding factor 4) and PtrABR1 (P. trifoliata ABA repressor 1), were identified as upstream transcriptional activators of PtrBAM3 through yeast one-hybrid library screening and protein-DNA interaction assays. Both PtrABF4 and PtrABR1 played a positive role in plant drought tolerance by modulating soluble sugar accumulation derived from BAM3-mediated starch decomposition. In addition, PtrABF4 could directly regulate PtrABR1 expression by binding to its promoter, leading to a regulatory cascade to reinforce the activation of PtrBAM3. Moreover, PtrABF4 physically interacted with PtrABR1 to form a protein complex that further promoted the transcriptional regulation of PtrBAM3. Taken together, our finding reveals that a transcriptional cascade composed of ABF4 and ABR1 works synergistically to upregulate BAM3 expression and starch catabolism in response to drought condition. The results shed light on the understanding of the regulatory molecular mechanisms underlying BAM-mediated soluble sugar accumulation for rendering drought tolerance in plants.


Assuntos
Fatores de Transcrição , beta-Amilase , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resistência à Seca , Amilases/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Carboidratos , Secas , Açúcares , beta-Amilase/genética , Amido/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
6.
Plant J ; 110(6): 1603-1618, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384109

RESUMO

The phytohormone abscisic acid (ABA) regulates ion channel activity and stomatal movement in response to drought stress. Cellular ABA levels change depending on cellular and environmental conditions via modulation of its biosynthesis, catabolism and transport. Although factors involved in ABA biosynthesis and degradation have been studied extensively, how ABA transporters are modulated to fine-tune ABA levels, especially under drought stress, remains elusive. Here, we show that Arabidopsis thaliana SORTING NEXIN 2 (SNX2) proteins play a critical role in endosomal trafficking of the ABA exporter ATP BINDING CASETTE G25 (ABCG25) via direct interaction at endosomes, leading to its degradation in the vacuole. In agreement, snx2a and snx2b mutant plants showed enhanced recycling of GFP-ABCG25 from early endosomes to the plasma membrane and higher accumulation of GFP-ABCG25. Phenotypically, snx2a and snx2b plants were highly sensitive to exogenous ABA and displayed enhanced ABA-mediated inhibition of inward K+ currents and ABA-mediated activation of slow anion currents in guard cells, resulting in an increased tolerance to drought stress. Based on these results, we propose that SNX2 proteins play a crucial role in stomatal movement and tolerance to drought stress by modulating the endosomal trafficking of ABCG25 and thus cellular ABA levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Estômatos de Plantas/fisiologia
7.
New Phytol ; 238(1): 216-236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36210523

RESUMO

Arginine decarboxylase (ADC)-mediated putrescine (Put) biosynthesis plays an important role in plant abiotic stress response. SNF1-related protein kinases 2s (SnRK2s) and abscisic acid (ABA)-response element (ABRE)-binding factors (ABFs), are core components of the ABA signaling pathway involved in drought stress response. We previously reported that ADC of Poncirus trifoliata (PtrADC) functions in drought tolerance. However, whether and how SnRK2 and ABF regulate PtrADC to modulate putrescine accumulation under drought stress remains largely unclear. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that a protein complex composed of PtrSnRK2.4 and PtrABF2 modulates putrescine biosynthesis and drought tolerance by directly regulating PtrADC. PtrABF2 was upregulated by dehydration in an ABA-dependent manner. PtrABF2 activated PtrADC expression by directly and specifically binding to the ABRE core sequence within its promoter and positively regulated drought tolerance via modulating putrescine accumulation. PtrSnRK2.4 interacts with and phosphorylates PtrABF2 at Ser93. PtrSnRK2.4-mediated PtrABF2 phosphorylation is essential for the transcriptional regulation of PtrADC. Besides, PtrSnRK2.4 was shown to play a positive role in drought tolerance by facilitating putrescine synthesis. Taken together, this study sheds new light on the regulatory module SnRK2.4-ABF2-ADC responsible for fine-tuning putrescine accumulation under drought stress, which advances our understanding on transcriptional regulation of putrescine synthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosforilação , Putrescina/metabolismo , Arabidopsis/genética , Secas , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
8.
Plant Cell ; 32(2): 449-469, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826966

RESUMO

Rapid pollen tube growth requires uptake of Suc or its hydrolytic products, hexoses, from the apoplast of surrounding tissues in the style. Due to species-specific sugar requirements, reliance of pollen germination and tube growth on cell wall invertase and Suc or hexose transporters varies between species, but it is not known if plants have a sugar transporter that mediates the uptake of both hexose and Suc for pollen tube growth. Here, we show that a sugar transporter protein in apple (Malus domestica), MdSTP13a, takes up both hexose and Suc when expressed in yeast, and is essential for pollen tube growth on Glc and Suc but not on maltose. MdSTP13a-mediated direct uptake of Suc is primarily responsible for apple pollen tube growth on Suc medium. Sorbitol, a major photosynthate and transport carbohydrate in apple, modulates pollen tube growth via the MYB transcription factor MdMYB39L, which binds to the promoter of MdSTP13a to activate its expression. Antisense repression of MdSTP13a blocks sorbitol-modulated pollen tube growth. These findings demonstrate that MdSTP13a takes up both hexose and Suc for sorbitol-modulated pollen tube growth in apple, revealing a situation where acquisition of sugars for pollen tube growth is regulated by a sugar alcohol.


Assuntos
Transporte Biológico/fisiologia , Hexoses/metabolismo , Malus/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Sorbitol/metabolismo , Sacarose/metabolismo , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas , Maltose/metabolismo , Malus/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Tubo Polínico/genética , Polinização/genética , Polinização/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta-Frutofuranosidase/metabolismo
9.
Plant J ; 108(3): 705-724, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34398993

RESUMO

Ethylene-responsive factors (ERFs) are plant-specific transcription factors involved in cold stress response, and raffinose is known to accumulate in plants exposed to cold. However, it remains elusive whether ERFs function in cold tolerance by modulating raffinose synthesis. Here, we identified a cold-responsive PtrERF108 from trifoliate orange (Poncirus trifoliata (L.) Raf.), a cold-tolerant plant closely related to citrus. PtrERF108 is localized in the nucleus and has transcriptional activation activity. Overexpression of PtrERF108 conferred enhanced cold tolerance of transgenic lemon, whereas virus-induced gene silencing (VIGS)-mediated knockdown of PtrERF108 in trifoliate orange greatly elevated cold sensitivity. Transcriptome profiling showed that PtrERF108 overexpression caused extensive reprogramming of genes associated with signaling transduction, physiological processes and metabolic pathways. Among them, a raffinose synthase (RafS)-encoding gene, PtrRafS, was confirmed as a direct target of PtrERF108. RafS activity and raffinose content were significantly increased in PtrERF108-overexpressing transgenic plants, but prominently decreased in the VIGS plants under cold conditions. Meanwhile, exogenous replenishment of raffinose could recover the cold tolerance of PtrERF108-silenced plants, whereas VIGS-mediated knockdown of PtrRafS resulted in cold-sensitive phenotype. Taken together, the current results demonstrate that PtrERF108 plays a positive role in cold tolerance by modulation of raffinose synthesis via regulating PtrRafS. Our findings reveal a new transcriptional module composed of ERF108-RafS underlying cold-induced raffinose accumulation in plants.


Assuntos
Resposta ao Choque Frio/fisiologia , Galactosiltransferases/genética , Proteínas de Plantas/genética , Poncirus/fisiologia , Rafinose/biossíntese , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citrus/genética , Citrus/fisiologia , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poncirus/efeitos dos fármacos , Regiões Promotoras Genéticas , Rafinose/genética , Rafinose/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant Cell Physiol ; 63(1): 19-29, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34478552

RESUMO

C-repeat (CRT) binding factors (CBFs) are well known to act as crucial transcription factors that function in cold stress response. Arginine decarboxylase (ADC)- mediated putrescine (Put) biosynthesis has been reported to be activated in plants exposed to cold conditions, but it remains elusive whether CBFs can regulate ADC expression and Put accumulation. In this study, we show that cold upregulated ADC gene (Citrus sinensis ADC;CsADC) and elevated endogenous Put content in sweet orange (C.sinensis). The promoter of CsADC contains two CRT sequences that are canonical elements recognized by CBFs. Sweet orange genome contains four CBFs (CsCBF1-4), in which CsCBF1 was significantly induced by cold. CsCBF1, located in the nucleus, was demonstrated to bind directly and specifically to the promoter of CsADC and acted as a transcriptional activator. Overexpression of CsCBF1 led to notable elevation of CsADC and Put levels in sweet orange transgenic plants, along with remarkably enhanced cold tolerance, relative to the wild type. However, pretreatment with D-arginine, an ADC inhibitor, caused a prominent reduction of endogenous Put levels in the overexpressing lines, accompanied by greatly compromised cold tolerance. Taken together, these results demonstrate that the CBF1 of sweet orange directly regulates ADC expression and modulates Put synthesis for orchestrating the cold tolerance. Our findings shed light on the transcriptional regulation of Put accumulation through targeting the ADC gene in the presence of cold stress. Meanwhile, this study illustrates a new mechanism underlying the CBF-mediated cold stress response.


Assuntos
Aclimatação/genética , Carboxiliases/genética , Carboxiliases/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Resposta ao Choque Frio/genética , Putrescina/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas
11.
Plant Biotechnol J ; 20(1): 183-200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510677

RESUMO

Plant ethylene-responsive factors (ERFs) play essential roles in cold stress response, but the molecular mechanisms underlying this process remain poorly understood. In this study, we characterized PtrERF9 from trifoliate orange (Poncirus trifoliata (L.) Raf.), a cold-hardy plant. PtrERF9 was up-regulated by cold in an ethylene-dependent manner. Overexpression of PtrERF9 conferred prominently enhanced freezing tolerance, which was drastically impaired when PtrERF9 was knocked down by virus-induced gene silencing. Global transcriptome profiling indicated that silencing of PtrERF9 resulted in substantial transcriptional reprogramming of stress-responsive genes involved in different biological processes. PtrERF9 was further verified to directly and specifically bind with the promoters of glutathione S-transferase U17 (PtrGSTU17) and ACC synthase1 (PtrACS1). Consistently, PtrERF9-overexpressing plants had higher levels of PtrGSTU17 transcript and GST activity, but accumulated less ROS, whereas the silenced plants showed the opposite changes. Meanwhile, knockdown of PtrERF9 decreased PtrACS1 expression, ACS activity and ACC content. However, overexpression of PtrERF9 in lemon, a cold-sensitive species, caused negligible alterations of ethylene biosynthesis, which was attributed to perturbed interaction between PtrERF9, along with lemon homologue ClERF9, and the promoter of lemon ACS1 gene (ClACS1) due to mutation of the cis-acting element. Taken together, these results indicate that PtrERF9 acts downstream of ethylene signalling and functions positively in cold tolerance via modulation of ROS homeostasis by regulating PtrGSTU17. In addition, PtrERF9 regulates ethylene biosynthesis by activating PtrACS1 gene, forming a feedback regulation loop to reinforce the transcriptional regulation of its target genes, which may contribute to the elite cold tolerance of Poncirus trifoliata.


Assuntos
Poncirus , Temperatura Baixa , Etilenos/metabolismo , Retroalimentação , Regulação da Expressão Gênica de Plantas/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poncirus/genética , Espécies Reativas de Oxigênio/metabolismo
12.
New Phytol ; 235(6): 2331-2349, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35695205

RESUMO

Invertase (INV)-mediated sucrose (Suc) hydrolysis, leading to the irreversible production of glucose (Glc) and fructose (Frc), plays an essential role in abiotic stress tolerance of plants. However, the regulatory network associated with the Suc catabolism in response to cold environment remains largely elusive. Herein, the cold-induced alkaline/neutral INV gene PtrA/NINV7 of trifoliate orange (Poncirus trifoliata (L.) Raf.) was shown to function in cold tolerance via mediating the Suc hydrolysis. Meanwhile, a nuclear matrix-associated region containing A/T-rich sequences within its promoter was indispensable for the cold induction of PtrA/NINV7. Two AT-Hook Motif Containing Nuclear Localized (AHL) proteins, PtrAHL14 and PtrAHL17, were identified as upstream transcriptional activators of PtrA/NINV7 by interacting with the A/T-rich motifs. PtrAHL14 and PtrAHL17 function positively in the cold tolerance by modulating PtrA/NINV7-mediated Suc catabolism. Furthermore, both PtrAHL14 and PtrAHL17 could form homo- and heterodimers between each other, and interacted with two histone acetyltransferases (HATs), GCN5 and TAF1, leading to elevated histone3 acetylation level under the cold stress. Taken together, our findings unraveled a new cold-responsive signaling module (AHL14/17-HATs-A/NINV7) for orchestration of Suc catabolism and cold tolerance, which shed light on the molecular mechanisms underlying Suc catabolism catalyzed by A/NINVs under cold stress.


Assuntos
Citrus , Poncirus , Citrus/genética , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poncirus/genética , Poncirus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sacarose/metabolismo , beta-Frutofuranosidase/metabolismo
13.
New Phytol ; 236(2): 495-511, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751377

RESUMO

Initially discovered in yeast, mitochondrial retrograde signalling has long been recognised as an essential in the perception of stress by eukaryotes. However, how to maintain the optimal amplitude and duration of its activation under natural stress conditions remains elusive in plants. Here, we show that TaSRO1, a major contributor to the agronomic performance of bread wheat plants exposed to salinity stress, interacted with a transmembrane domain-containing NAC transcription factor TaSIP1, which could translocate from the endoplasmic reticulum (ER) into the nucleus and activate some mitochondrial dysfunction stimulon (MDS) genes. Overexpression of TaSIP1 and TaSIP1-∆C (a form lacking the transmembrane domain) in wheat both compromised the plants' tolerance of salinity stress, highlighting the importance of precise regulation of this signal cascade during salinity stress. The interaction of TaSRO1/TaSIP1, in the cytoplasm, arrested more TaSIP1 on the membrane of ER, and in the nucleus, attenuated the trans-activation activity of TaSIP1, therefore reducing the TaSIP1-mediated activation of MDS genes. Moreover, the overexpression of TaSRO1 rescued the inferior phenotype induced by TaSIP1 overexpression. Our study provides an orchestrating mechanism executed by the TaSRO1-TaSIP1 module that balances the growth and stress response via fine tuning the level of mitochondria retrograde signalling.


Assuntos
Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Salinidade , Tolerância ao Sal/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo
14.
Hepatology ; 73(4): 1419-1435, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32750152

RESUMO

BACKGROUND AND AIMS: Circular RNAs (circRNAs) and extracellular vesicles (EVs) are involved in various malignancies. We aimed to clarify the functions and mechanisms of dysregulated circRNAs in the cells and EVs of cholangiocarcinoma (CCA). APPROACH AND RESULTS: CircRNA microarray was used to identify circRNA expression profiles in CCA tissues and bile-derived EVs (BEVs). CCA-associated circRNA 1 (circ-CCAC1) expression was measured by quantitative real-time PCR. The clinical importance of circ-CCAC1 was analyzed by receiver operating characteristic curves, Fisher's exact test, Kaplan-Meier plots, and Cox regression model. The functions of circ-CCAC1 and exosomal circ-CCAC1 were explored in CCA cells and human umbilical vein endothelial cells (HUVECs), respectively. Different animal models were used to verify the in vitro results. RNA sequencing, bioinformatics, RNA immunoprecipitation, RNA pulldown, chromatin immunoprecipitation followed by sequencing, and luciferase reporter assays were used to determine the regulatory networks of circ-CCAC1 in CCA cells and HUVECs. Circ-CCAC1 levels were increased in cancerous bile-resident EVs and tissues. The diagnostic and prognostic values of circ-CCAC1 were identified in patients with CCA. For CCA cells, circ-CCAC1 increased cell progression by sponging miR-514a-5p to up-regulate Yin Yang 1 (YY1). Meanwhile, YY1 directly bound to the promoter of calcium modulating ligand to activate its transcription. Moreover, circ-CCAC1 from CCA-derived EVs was transferred to endothelial monolayer cells, disrupting endothelial barrier integrity and inducing angiogenesis. Mechanistically, circ-CCAC1 increased cell leakiness by sequestering enhancer of zeste homolog 2 in the cytoplasm, thus elevating SH3 domain-containing GRB2-like protein 2 expression to reduce the levels of intercellular junction proteins. In vivo studies further showed that increased circ-CCAC1 levels in circulating EVs and cells accelerated both CCA tumorigenesis and metastasis. CONCLUSIONS: Circ-CCAC1 plays a vital role in CCA tumorigenesis and metastasis and may be an important biomarker/therapeutic target for CCA.


Assuntos
Neoplasias dos Ductos Biliares/sangue , Carcinogênese/metabolismo , Colangiocarcinoma/sangue , Endotélio Vascular/metabolismo , Neovascularização Patológica/metabolismo , RNA Circular/sangue , RNA Circular/genética , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Coledocolitíase/sangue , Coledocolitíase/genética , Coledocolitíase/patologia , Vesículas Extracelulares/metabolismo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Inorg Chem ; 61(18): 6943-6952, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35485722

RESUMO

Lead (Pb)-free halide hybrid materials have received a great deal of attention because of their potential in optoelectronic applications. However, heteroatom-based amine lead-free tin halide hybrid single crystals have not been well investigated yet. Detailed synthetic processes, growth, crystal structures, and stability of (ACH2CH2NH3)2SnBr6 (A = OH or SH) and (BCH2CH2NH3)2SnI4 (B = I or SH) single crystals were investigated. Interestingly, (IH3NCH2CH2SSCH2CH2NH3)2HPO3 exhibited orange-red photoluminescence (PL) at about 620 nm with an average PL lifetime of about 912 ns. (HSCH2CH2NH3)2SnI4 single crystals exhibited a PL peak at 620 nm with an average PL lifetime of about 0.607 ns. More importantly, (HSCH2CH2NH3)2SnI4 single crystals exhibited reversible red-black color transformations when exposed to a H3PO2 solution and an ambient atmosphere, which was attributed to oxidation from Sn2+ to Sn4+, rather than from I- to I3- (I2). The intriguing characteristics should provide guidance for further optoelectronic applications of these Pb-free halide hybrid materials.

16.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502195

RESUMO

Piezoelectric vibration energy harvester (PVEH) is a promising device for sustainable power supply of wireless sensor nodes (WSNs). PVEH is resonant and generates power under constant frequency vibration excitation of mechanical equipment. However, it cannot output high power through off-resonance if it has frequency offset in manufacturing, assembly and use. To address this issue, this paper designs and optimizes a PVEH to harvest power specifically from grid transformer vibration at 100 Hz with high power density of 5.28 µWmm-3g-2. Some resonant frequency modulation methods of PVEH are discussed by theoretical analysis and experiment, such as load impedance, additional mass, glue filling, axial and transverse magnetic force frequency modulation. Finally, efficient energy harvesting of 6.1 V output in 0.0226 g acceleration is tested in grid transformer reactor field application. This research has practical value for the design and optimization process of tunable PVEH for a specific vibration source.


Assuntos
Modalidades de Fisioterapia , Vibração , Fenômenos Físicos , Aceleração , Comércio
17.
J Integr Plant Biol ; 64(12): 2327-2343, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36218272

RESUMO

Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.


Assuntos
Poncirus , Poncirus/genética , Poncirus/metabolismo , Tetraploidia , Metilação , Ácidos Graxos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Temperatura Baixa
18.
BMC Plant Biol ; 21(1): 559, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823468

RESUMO

BACKGROUND: Sucrose (Suc) hydrolysis is directly associated with plants tolerance to multiple abiotic stresses. Invertase (INV) enzymes irreversibly catalyze Suc degradation to produce glucose (Glc) and fructose (Frc). However, genome-wide identification and function of individual members of the INV gene family in Poncirus trifoliata or its Citrus relatives in response to abiotic stresses are not fully understood. RESULTS: In this report, fourteen non-redundant PtrINV family members were identified in P. trifoliata including seven alkaline/neutral INV genes (PtrA/NINV1-7), two vacuolar INV genes (PtrVINV1-2), and five cell wall INV isoforms (PtrCWINV1-5). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of PtrINVs. In addition, expression analysis of INV genes during several abiotic stresses in various tissues indicated the central role of A/NINV7 among INV family members in response to abiotic stresses. Furthermore, our data demonstrated that high accumulation of Suc, Glc, Frc and total sugar contents were directly correlated with the elevated activities of soluble INV enzymes in the cold-tolerant P. trifoliata, C. ichangensis and C. sinensis, demonstrating the potential role of soluble INV enzymes for the cold tolerance of Citrus. CONCLUSIONS: This work offered a framework for understanding the physiological role of INV genes and laid a foundation for future functional studies of these genes in response to abiotic stresses.


Assuntos
Adaptação Fisiológica/genética , Citrus/genética , Citrus/metabolismo , Temperatura Baixa , Poncirus/genética , Poncirus/metabolismo , Sacarose/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Família Multigênica , Filogenia
19.
Plant Physiol ; 182(2): 992-1006, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31772076

RESUMO

Malate accumulation in the vacuole largely determines apple (Malus domestica) fruit acidity, and low fruit acidity is strongly associated with truncation of Ma1, an ortholog of ALUMINUM-ACTIVATED MALATE TRANSPORTER9 (ALMT9) in Arabidopsis (Arabidopsis thaliana). A mutation at base 1,455 in the open reading frame of Ma1 leads to a premature stop codon that truncates the protein by 84 amino acids at its C-terminal end. Here, we report that both the full-length protein, Ma1, and its naturally occurring truncated protein, ma1, localize to the tonoplast; when expressed in Xenopus laevis oocytes and Nicotiana benthamiana cells, Ma1 mediates a malate-dependent inward-rectifying current, whereas the ma1-mediated transmembrane current is much weaker, indicating that ma1 has significantly lower malate transport activity than Ma1. RNA interference suppression of Ma1 expression in 'McIntosh' apple leaves, 'Empire' apple fruit, and 'Orin' apple calli results in a significant decrease in malate level. Genotyping and phenotyping of 186 apple accessions from a diverse genetic background of 17 Malus species combined with the functional analyses described above indicate that Ma1 plays a key role in determining fruit acidity and that the truncation of Ma1 to ma1 is genetically responsible for low fruit acidity in apple. Furthermore, we identified a C-terminal domain conserved in all tonoplast-localized ALMTs essential for Ma1 function; protein truncations into this conserved domain significantly lower Ma1 transport activity. We conclude that the truncation of Ma1 to ma1 reduces its malate transport function by removing a conserved C-terminal domain, leading to low fruit acidity in apple.


Assuntos
Frutas/genética , Frutas/metabolismo , Malatos/metabolismo , Malus/genética , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Malus/metabolismo , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Domínios Proteicos , Interferência de RNA , Nicotiana/metabolismo , Nicotiana/fisiologia , Vacúolos/genética , Vacúolos/fisiologia , Xenopus laevis
20.
Plant Cell ; 30(7): 1562-1581, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29871985

RESUMO

In plant-microbe interactions, plant sugars produced by photosynthesis are not only a carbon source for pathogens, but may also act as signals that modulate plant defense responses. Here, we report that decreasing sorbitol synthesis in apple (Malus domestica) leaves by antisense suppression of ALDOSE-6-PHOSPHATE REDUCTASE (A6PR) leads to downregulation of 56 NUCLEOTIDE BINDING/LEUCINE-RICH REPEAT (NLR) genes and converts the phenotypic response to Alternaria alternata from resistant to susceptible. We identified a resistance protein encoded by the apple MdNLR16 gene and a small protein encoded by the fungal HRIP1 gene that interact in both a yeast two-hybrid assay and a bimolecular fluorescence complementation assay. Deletion of HRIP1 in A. alternata enables gain of virulence on the wild-type control plant. Overexpression of MdNLR16 in two antisense A6PR lines increases resistance, whereas RNAi suppression of MdNLR16 in the wild-type control decreases resistance against A. alternata MdWRKY79 transcriptionally regulates MdNLR16 by binding to the promoter of MdNLR16 in response to sorbitol, and exogenous sorbitol feeding partially restores resistance of the antisense A6PR lines to A. alternata These findings indicate that sorbitol modulates resistance to A. alternata via the MdNLR16 protein that interacts with the fungal effector in a classic gene-for-gene manner in apple.


Assuntos
Alternaria/patogenicidade , Malus/metabolismo , Malus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Sorbitol/farmacologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Malus/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA