Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 4321-4337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770103

RESUMO

Purpose: Cannabidiol (CBD) is a promising therapeutic drug with low addictive potential and a favorable safety profile. However, CBD did face certain challenges, including poor solubility in water and low oral bioavailability. To harness the potential of CBD by combining it with a transdermal drug delivery system (TDDS). This innovative approach sought to develop a transdermal patch dosage form with micellar vesicular nanocarriers to enhance the bioavailability of CBD, leading to improved therapeutic outcomes. Methods: A skin-penetrating micellar vesicular nanocarriers, prepared using nano emulsion method, cannabidiol loaded transdermal nanocarriers-12 (CTD-12) was presented with a small particle size, high encapsulation efficiency, and a drug-loaded ratio for CBD. The skin permeation ability used Strat-M™ membrane with a transdermal diffusion system to evaluate the CTD and patch of CTD-12 (PCTD-12) within 24 hrs. PCTD-12 was used in a preliminary pharmacokinetic study in rats to demonstrate the potential of the developed transdermal nanocarrier drug patch for future applications. Results: In the transdermal application of CTD-12, the relative bioavailability of the formulation was 3.68 ± 0.17-fold greater than in the free CBD application. Moreover, PCTD-12 indicated 2.46 ± 0.18-fold higher relative bioavailability comparing with free CBD patch in the ex vivo evaluation. Most importantly, in the pharmacokinetics of PCTD-12, the relative bioavailability of PCTD-12 was 9.47 ± 0.88-fold higher than in the oral application. Conclusion: CTD-12, a transdermal nanocarrier, represents a promising approach for CBD delivery, suggesting its potential as an effective transdermal dosage form.


Assuntos
Administração Cutânea , Disponibilidade Biológica , Canabidiol , Portadores de Fármacos , Nanopartículas , Absorção Cutânea , Adesivo Transdérmico , Canabidiol/farmacocinética , Canabidiol/química , Canabidiol/administração & dosagem , Animais , Absorção Cutânea/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Masculino , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Tamanho da Partícula , Pele/metabolismo , Pele/efeitos dos fármacos , Micelas
2.
Int J Nanomedicine ; 18: 8077-8097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164267

RESUMO

Purpose: Larger nanoparticles of bioactive compounds deposit high concentrations in follicular ducts after skin penetration. In this study, we investigated the effects of microcurrent cloth on the skin penetration and translocation of large nanoparticle applied for wound repair applications. Methods: A self-assembly of curcumin-loaded micelles (CMs) was prepared to improve the water solubility and transdermal efficiency of curcumin. Microcurrent cloth (M) was produced by Zn/Ag electrofabric printing to facilitate iontophoretic transdermal delivery. The transdermal performance of CMs combined with M was evaluated by a transdermal system and confocal microscopy. The CMs/iontophoretic combination effects on nitric oxide (NO) production and inflammatory cytokines were evaluated in Raw 264.7 cells. The wound-healing property of the combined treatment was assessed in a surgically created full-thickness circular wound mouse model. Results: Energy-dispersive X-ray spectroscopy confirmed the presence of Zn/Ag on the microcurrent cloth. The average potential of M was measured to be +214.6 mV in PBS. Large particle CMs (CM-L) prepared using surfactant/cosurfactant present a particle size of 142.9 nm with a polydispersity index of 0.319. The solubility of curcumin in CM-L was 2143.67 µg/mL, indicating 250-fold higher than native curcumin (8.68 µg/mL). The combined treatment (CM-L+M) demonstrated a significant ability to inhibit NO production and increase IL-6 and IL-10 secretion. Surprisingly, microcurrent application significantly improved 20.01-fold transdermal performance of curcumin in CM-L with an obvious escape of CM-L from follicular ducts to surrounding observed by confocal microscopy. The CM-L+M group also exhibited a better wound-closure rate (77.94% on day 4) and the regenerated collagen intensity was approximately 2.66-fold higher than the control group, with a closure rate greater than 90% on day 8 in vivo. Conclusion: Microcurrent cloth play as a promising iontophoretic transdermal drug delivery accelerator that enhances skin penetration and assists CMs to escape from follicular ducts for wound repair applications.


Assuntos
Curcumina , Camundongos , Animais , Curcumina/farmacologia , Curcumina/química , Micelas , Administração Cutânea , Pele , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA