Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401150, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506563

RESUMO

The unique optical and electrical properties of graphene-based heterojunctions make them significant for artificial synaptic devices, promoting the advancement of biomimetic vision systems. However, mass production and integration of device arrays are necessary for visual imaging, which is still challenging due to the difficulty in direct growth of wafer-scale graphene patterns. Here, a novel strategy is proposed using photosensitive polymer as a solid carbon source for in situ growth of patterned graphene on diverse substrates. The growth mechanism during high-temperature annealing is elucidated, leading to wafer-scale graphene patterns with exceptional uniformity, ideal crystalline quality, and precise control over layer number by eliminating the release of volatile from oxygen-containing resin. The growth strategy enables the fabrication of two-inch optoelectronic artificial synaptic device array based on graphene/n-AlGaN heterojunction, which emulates key functionalities of biological synapses, including short-term plasticity, long-term plasticity, and spike-rate-dependent plasticity. Moreover, the mimicry of visual learning in the human brain is attributed to the regulation of excitatory and inhibitory post-synapse currents, following a learning rule that prioritizes initial recognition before memory formation. The duration of long-term memory reaches 10 min. The in situ growth strategy for patterned graphene represents the novelty for fabricating fundamental hardware of an artificial neuromorphic system.

2.
Opt Lett ; 49(11): 3279-3282, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824383

RESUMO

AlGaN-based solar-blind ultraviolet avalanche detectors have huge potentials in the fields of corona discharge monitoring, biological imaging, etc. Here, we study the impact of the heterojunction polarization-related effects on the AlGaN-based solar-blind ultraviolet avalanche detectors. Our work confirms that the polarization heterojunction is beneficial to reducing avalanche bias and lifting avalanche gain by improving the electric field in the depletion region, while the polarization-induced fixed charges will lead to a redistribution of the electrons, in turn shielding the charges and weakening the electric field enhancement effect. This shielding effect will need external bias to eliminate, and that is why the polarization heterojunction cannot work at relatively low bias but has an enhancement effect at high bias. Controlling the doping level between the hetero-interface can affect the shielding effect. An unintentionally doped polarization heterojunction can effectively reduce the shielding effect, thus reducing the avalanche bias. The conclusions also hold true for the negative polarization regime. We believe our findings can provide some useful insights for the design of the AlGaN-based solar-blind ultraviolet detectors.

3.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894078

RESUMO

The paper presents a wide-bandwidth, low-polarization semiconductor optical amplifier (SOA) based on strained quantum wells. By enhancing the material gain of quantum wells for TM modes, we have extended the gain bandwidth of the SOA while reducing its polarization sensitivity. Through a combination of tilted waveguide design and cavity surface optical thin film design, we have effectively reduced the cavity surface reflectance of the SOA, thus decreasing device transmission losses and noise figure. At a wavelength of 1550 nm and a drive current of 1.4 A, the output power can reach 188 mW, with a small signal gain of 36.4 dB and a 3 dB gain bandwidth of 128 nm. The linewidth broadening is only 1.032 times. The polarization-dependent gain of the SOA is below 1.4 dB, and the noise figure is below 5.5 dB. The device employs only I-line lithography technology, offering simple fabrication processes and low costs yet delivering outstanding and stable performance. The designed SOA achieves wide gain bandwidth, high gain, low polarization sensitivity, low linewidth broadening, and low noise, promising significant applications in the wide-bandwidth optical communication field across the S + C + L bands.

4.
Angew Chem Int Ed Engl ; 63(19): e202317856, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38389190

RESUMO

In solid-state lithium metal batteries (SSLMBs), the inhomogeneous electrolyte-electrode interphase layer aggravates the interfacial stability, leading to discontinuous interfacial ion/charge transport and continuous degradation of the electrolyte. Herein, we constructed an anion-modulated ionic conductor (AMIC) that enables in situ construction of electrolyte/electrode interphases for high-voltage SSLMBs by exploiting conformational transitions under multiple interactions between polymer and lithium salt anions. Anions modulate the decomposition behavior of supramolecular poly (vinylene carbonate) (PVC) at the electrode interface by changing the spatial conformation of the polymer chains, which further enhances ion transport and stabilizes the interfacial morphology. In addition, the AMIC weakens the "Li+-solvation" and increases Li+ vehicle sites, thereby enhancing the lithium-ion transport number (tLi +=~0.67). Consequently, Li || LiNi0.8Co0.1Mn0.1O2 cell maintains about 85 % capacity retention and Coulombic efficiency >99.8 % in 200 cycles at a charge cut-off voltage of 4.5 V. This study provides a new understanding of lithium salt anions regulating polymer chain segment behavior in the solid-state polymer electrolyte (SPE) and highlights the importance of the ion environment in the construction of interfacial phases and ionic conduction.

5.
Opt Express ; 31(9): 14945-14953, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157347

RESUMO

AlGaN is an important material for deep ultraviolet optoelectronic devices and electronic devices. The phase separation on the AlGaN surface means small-scale compositional fluctuations of Al, which is prone to degrade the performance of devices. In order to study the mechanism of the surface phase separation, the Al0.3Ga0.7N wafer was investigated by the scanning diffusion microscopy method based on the photo-assisted Kelvin force probe microscope. The response of the surface photovoltage near the bandgap was quite different for the edge and the center of the island on the AlGaN surface. We utilize the theoretical model of scanning diffusion microscopy to fit the local absorption coefficients from the measured surface photovoltage spectrum. During the fitting process, we introduce as and ab parameters (bandgap shift and broadening) to describe the local variation of absorption coefficients α(as, ab, λ). The local bandgap and Al composition can be calculated quantitatively from the absorption coefficients. The results show that there is lower bandgap (about 305 nm) and lower Al composition (about 0.31) at the edge of the island, compared with those at the center of the island (about 300 nm for bandgap and 0.34 for Al composition). Similar to the edge of the island, there is a lower bandgap at the V-pit defect which is about 306 nm corresponding to the Al composition of about 0.30. These results mean Ga enrichment both at the edge of the island and the V-pit defect position. It proves that scanning diffusion microscopy is an effective method to review the micro-mechanism of AlGaN phase separation.

6.
Opt Lett ; 48(19): 5069-5072, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773387

RESUMO

III-nitride optoelectronic chips have tremendous potential for developing integrated computing and communication systems with low power consumption. The monolithic, top-down approaches are advantageous for simplifying the fabrication process and reducing the corresponding manufacturing cost. Herein, an ultraviolet optical interconnection system is investigated to discover the way of multiplexing between emission and absorption modulations on a monolithic optoelectronic chip. All on-chip components, the transmitter, monitor, waveguide, modulator, and receiver, share the same quantum well structure. As an example, two bias-controlled modulation modes are used to modulate video and audio signals in the experiment presented in this Letter. The results show that our on-chip optoelectronic system works efficiently in the near ultraviolet band, revealing the potential breadth of GaN optoelectronic integration.

7.
Opt Lett ; 48(12): 3175-3178, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319055

RESUMO

The AlGaN-based deep ultraviolet light-emitting diode (DUV LED) has advantages of environmentally friendly materials, tunable emission wavelength, and easy miniaturization. However, the light extraction efficiency (LEE) of an AlGaN-based DUV LED is low, which hinders its applications. Here, we design a graphene/Al nanoparticles/graphene (Gra/Al NPs/Gra) hybrid plasmonic structure, where the strong resonant coupling of local surface plasmons (LSPs) induces a 2.9-times enhancement for the LEE of the DUV LED according to the photoluminescence (PL). The dewetting of Al NPs on a graphene layer by annealing is optimized, resulting in better formation and uniform distribution. The near-field coupling of Gra/Al NPs/Gra is enhanced via charge transfer among graphene and Al NPs. In addition, the skin depth increment results in more excitons being coupled out of multiple quantum wells (MQWs). An enhanced mechanism is proposed, revealing that the Gra/metal NPs/Gra offers a reliable strategy for improving the optoelectronic device performance, which might trigger the advances of LEDs and lasers with high brightness and power density.


Assuntos
Grafite , Nanopartículas , Compostos de Alumínio , Miniaturização
8.
Mol Biol Rep ; 50(3): 2269-2281, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36574092

RESUMO

BACKGROUND: BSG (CD147) is a member of the immunoglobulin superfamily that shows roles for potential prognostics and therapeutics for metastatic cancers and SARS-CoV-2 invasion for COVID-19. The susceptibility of malignant cancers to SARS-CoV-2 as well as the correlations between disease outcome and BSG expression in tumor tissues have not been studied in depth. METHODS: In this study, we explored the BSG expression profile, survival correlation, DNA methylation, mutation, diagnostics, prognostics, and tumor-infiltrating lymphocytes (TILs) from different types of cancer tissues with corresponding healthy tissues. In vitro studies for cordycepin (CD), N6-(2-hydroxyethyl) adenosine (HEA), N6, N6-dimethyladenosine (m62A) and 5'-uridylic acid (UMP) on BSG expression were also conducted. RESULTS: We revealed that BSG is conserved among different species, and significantly upregulated in seven tumor types, including ACC, ESCA, KICH, LIHC, PAAD, SKCM and THYM, compared with matched normal tissues, highlighting the susceptibility of these cancer patients to SARS-CoV-2 invasion, COVID-19 severity and progression of malignant cancers. High expression in BSG was significantly correlated with a short OS in LGG, LIHC and OV patients, but a long OS in KIRP patients. Methylation statuses in the BSG promoter were significantly higher in BRCA, HNSC, KIRC, KIRP, LUSC, PAAD, and PRAD tumor tissues, but lower in READ. Four CpGs in the BSG genome were identified as potential DNA methylation biomarkers which could be used to predict malignant cancers from normal individuals. Furthermore, a total of 65 mutation types were found, in which SARC showed the highest mutation frequency (7.84%) and THYM the lowest (0.2%). Surprisingly, both for disease-free and progression-free survival in pan-cancers were significantly reduced after BSG mutations. Additionally, a correlation between BSG expression and immune lymphocytes of CD56bright natural killer cell, CD56dim natural killer cell and monocytes, MHC molecules of HLA-A, HLA-B, HLA-C and TAPBP, immunoinhibitor of PVR, PVRL2, and immunostimulators of TNFRSF14, TNFRSF18, TNFRSF25, and TNFSF9, was revealed in most cancer types. Moreover, BSG expression was downregulated by CD, HEA, m62A or UMP in cancer cell lines, suggesting therapeutic potentials for interfering entry of SARS-CoV-2. CONCLUSIONS: Altogether, our study highlights the values of targeting BSG for diagnostic, prognostic and therapeutic strategies to fight malignant cancers and COVID-19. Small molecules CD, HEA, m62A and UMP imply therapeutic potentials in interfering with entry of SARS-CoV-2 and progression of malignant cancers.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/diagnóstico , COVID-19/genética , Teste para COVID-19 , Expressão Gênica , Genes MHC Classe I , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico , SARS-CoV-2
9.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687780

RESUMO

The 1550 nm band semiconductor optical amplifier (SOA) has great potential for applications such as optical communication. Its wide-gain bandwidth is helpful in expanding the bandwidth resources of optical communication, thereby increasing total capacity transmitted over the fiber. Its relatively low cost and ease of integration also make it a high-performance amplifier of choice for LiDAR applications. In recent years, with the rapid development of quantum-well (QW) material systems, SOAs have gradually overcome the shortcomings of polarization sensitivity and high noise. The research on quantum-dot (QD) materials has further improved the noise characteristics and transmission loss of SOAs. The design of special waveguide structures-such as plate-coupled optical waveguide amplifiers and tapered amplifiers-has also increased the saturation output power of SOAs. The maximum gain of the SOA has been reported to be more than 21 dB. The maximum saturation output power has been reported to be more than 34.7 dBm. The maximum 3 dB gain bandwidth has been reported to be more than 120 nm, the lowest noise figure has been reported to be less than 4 dB, and the lowest polarization-dependent gain has been reported to be 0.1 dB. This study focuses on the improvement and enhancement of the main performance parameters of high-power SOAs in the 1550 nm band and introduces the performance parameters, the research progress of high-power SOAs in the 1550 nm band, and the development and application status of SOAs. Finally, the development trends and prospects of high-power SOAs in the 1550 nm band are summarized.

10.
Opt Lett ; 47(6): 1561-1564, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290364

RESUMO

In this work, we have proposed and fabricated a metal/Ga2O3/GaN hybrid structure metal-semiconductor-metal ultraviolet photodetector with low dark current and high responsivity. The Schottky contact of Ni/Ga2O3 makes the Ga2O3 layer fully depleted. The strong electric field in the Ga2O3 depletion region can push the photo-induced electrons from the Ga2O3 layer into the GaN layer for more efficient carrier transport. Therefore, the hybrid structure simultaneously utilizes the advantage of the absorption to solar-blind ultraviolet light by the Ga2O3 layer and the high electron mobility of the GaN layer. Thus, the dark current and the photocurrent for the proposed device can be greatly improved. As a result, an extremely high photo-to-dark-current ratio of 1.46 × 106 can be achieved. Furthermore, quick rise and fall times of 0.213 s and 0.027 s at the applied bias of 6 V are also obtained, respectively.

11.
Phys Chem Chem Phys ; 24(9): 5529-5538, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35172325

RESUMO

Quantum states and arrangement of valence levels determine most of the electronic and optical properties of semiconductors. Since the crystal field split-off hole (CH) band is the top valence band in high-Al-content AlGaN, TM-polarized optical anisotropy has become the limiting factor for efficient deep-ultraviolet (DUV) light emission. Additional potentials, including on-site Coulomb interaction and orbital state coupling induced by magnesium (Mg) doping, are proposed in this work to regulate the valence level arrangement of AlN/Al0.75Ga0.25N quantum wells (QWs). Diverse responses of valence quantum states |pi〉 (i = x, y, or z) of AlGaN to additional potentials due to different configurations and interactions of orbitals revealed by first-principles simulations are understood in terms of the linear combination of atomic orbital states. A positive charge and large Mg dopant in QWs introduce an additional Coulomb potential and modulate the orbital coupling distance. For the CH band (pz orbital), the Mg-induced Coulomb potential compensates the orbital coupling energy. Meanwhile, the heavy/light hole (HH/LH) bands (px and py orbitals) are elevated by the Mg-induced Coulomb potential. Consequently, HH/LH energy levels are relatively shifted upward and replace the CH level to be the top of the valence band. The inversion of optical anisotropy and enhancement of TE-polarized emission are further confirmed experimentally via spectroscopic ellipsometry.

12.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364238

RESUMO

As a cellular protease, transmembrane serine protease 2 (TMPRSS2) plays roles in various physiological and pathological processes, including cancer and viral entry, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we conducted expression, mutation, and prognostic analyses for the TMPRSS2 gene in pan-cancers as well as in COVID-19-infected lung tissues. The results indicate that TMPRSS2 expression was highest in prostate cancer. A high expression of TMPRSS2 was significantly associated with a short overall survival in breast invasive carcinoma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), while a low expression of TMPRSS2 was significantly associated with a short overall survival in lung adenocarcinoma (LUAD), demonstrating TMPRSS2 roles in cancer patient susceptibility and severity. Additionally, TMPRSS2 expression in COVID-19-infected lung tissues was significantly reduced compared to healthy lung tissues, indicating that a low TMPRSS2 expression may result in COVID-19 severity and death. Importantly, TMPRSS2 mutation frequency was significantly higher in prostate adenocarcinoma (PRAD), and the mutant TMPRSS2 pan-cancer group was significantly associated with long overall, progression-free, disease-specific, and disease-free survival rates compared to the wild-type (WT) TMPRSS2 pan-cancer group, demonstrating loss of functional roles due to mutation. Cancer cell lines were treated with small molecules, including cordycepin (CD), adenosine (AD), thymoquinone (TQ), and TQFL12, to mediate TMPRSS2 expression. Notably, CD, AD, TQ, and TQFL12 inhibited TMPRSS2 expression in cancer cell lines, including the PC3 prostate cancer cell line, implying a therapeutic role for preventing COVID-19 in cancer patients. Together, these findings are the first to demonstrate that small molecules, such as CD, AD, TQ, and TQFL12, inhibit TMPRSS2 expression, providing novel therapeutic strategies for preventing COVID-19 and cancers.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Neoplasias Pulmonares , Neoplasias da Próstata , Masculino , Humanos , SARS-CoV-2 , COVID-19/genética , Prognóstico , Adenosina , Mutação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Serina Endopeptidases/genética
13.
Opt Lett ; 46(9): 2147-2150, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929440

RESUMO

In this Letter, we experimentally achieve high-speed ultraviolet-C (UVC) communication based on a 276.8 nm UVC micro-LED. A record ${-}{{3}}\;{\rm{dB}}$ optical bandwidth of 452.53 MHz and light output power of 0.854 mW at a current density of ${{400}}\;{\rm{A/c}}{{\rm{m}}^2}$ are obtained with a chip size of 100 µm. A UVC link over 0.5 m with a data rate of 2 Gbps is achieved using 16-ary quadrature amplitude modulation orthogonal frequency division multiplexing and pre-equalization, and an extended distance over 3 m with a data rate of 0.82 Gbps is also presented. The demonstrated high-speed performance shows that micro-LEDs have great potential in the field of UVC communication.

14.
Appl Opt ; 60(35): 10975-10983, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200860

RESUMO

Traditional GaN-based metal-semiconductor-metal (MSM) photodetector (PD) features a symmetric structure, and thus a poor lateral carrier transport can be encountered, which can decrease the photocurrent and responsivity. To improve its photoelectric performance, we propose GaN-based MSM photodetectors with an AlGaN polarization layer structure on the GaN absorption layer. By using the AlGaN polarization layer, the electric field in the metal/GaN Schottky junction can be replaced by the electric fields in the metal/AlGaN Schottky junction and the AlGaN/GaN heterojunction. The increased polarization electric field can enhance the transport for the photogenerated carriers. More importantly, such polarization electric field cannot be easily screened by free carriers, thus showing the detectability for the even stronger illumination intensity. Moreover, we also conduct in-depth parametric investigations into the impact of different designs on the photocurrent and the responsivity. Hence, device physics regarding such proposed MSM PDs has been summarized.

15.
Small ; 15(16): e1900462, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30895732

RESUMO

2D organic-inorganic hybrid perovskites (OIHPs) may resolve the stability problem of bulk OIHPs. First-principles calculations are employed to investigate the mechanism behind their favorable material properties. Two processes are identified to play a critical role: First, the 2D structure supports additional distortions that enhance the intrinsic structural stability. Second, the surface terminations of 2D OIHPs suppress degradation effects due to humidity. Having uncovered the stabilization mechanism, 2D OIHPs are designed with optimal stability and favorable electronic properties.

16.
Breast Cancer Res ; 20(1): 97, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111373

RESUMO

BACKGROUND: Although ductal carcinoma in situ (DCIS) is a non-invasive breast cancer, many DCIS lesions may progress to invasive cancer and the genes and pathways responsible for its progression are largely unknown. FGFR1 plays an important role in cell proliferation, differentiation and carcinogenesis. The purpose of this study is to examine the roles of FGFR1 signaling in gene expression, cell proliferation, tumor growth and progression in a non-invasive DCIS model. METHODS: DCIS.COM cells were transfected with an empty vector to generate DCIS-Ctrl cells. DCIS-iFGFR1 cells were transfected with an AP20187-inducible iFGFR1 vector to generate DCIS-iFGFR1 cells. iFGFR1 consists of the v-Src myristoylation membrane-targeting sequence, FGFR1 cytoplasmic domain and the AP20187-inducible FKBP12 dimerization domain, which simulates FGFR1 signaling. The CRISPR/Cas9 system was employed to knockout ERK1, ERK2 or TNFAIP3 in DCIS-iFGFR1 cells. Established cell lines were treated with/without AP20187 and with/without FGFR1, MEK, or ERK1/2 inhibitor. The effects of these treatments were determined by Western blot, RNA-Seq, real-time RT-PCR, cell proliferation, mammosphere growth, xenograft tumor growth, and tumor histopathological assays. RESULTS: Activation of iFGFR1 signaling in DCIS-iFGFR1 cells enhanced ERK1/2 activities, induced partial epithelial-to-mesenchymal transition (EMT) and increased cell proliferation. Activation of iFGFR1 signaling promoted DCIS growth and progression to invasive cancer derived from DCIS-iFGFR1 cells in mice. Activation of iFGFR1 signaling also altered expression levels of 946 genes involved in cell proliferation, migration, cancer pathways, and other molecular and cellular functions. TNFAIP3, a ubiquitin-editing enzyme, is upregulated by iFGFR1 signaling in a FGFR1 kinase activity and in an ERK2-dependent manner. Importantly, TNFAIP3 knockout not only inhibited the AP20187-induced proliferation and tumor growth of DCIS-iFGFR1 cells, but also further reduced baseline proliferation and tumor growth of DCIS-iFGFR1 cells without AP20187 treatment. CONCLUSIONS: Activation of iFGFR1 promotes ERK1/2 activity, EMT, cell proliferation, tumor growth, DCIS progression to invasive cancer, and altered the gene expression profile of DCIS-iFGFR1 cells. Activation of iFGFR1 upregulated TNFAIP3 in an ERK2-dependent manner and TNFAIP3 is required for iFGFR1 activation-promoted DCIS.COM cell proliferation, mammosphere growth, tumor growth and progression. These results suggest that TNFAIP3 may be a potential target for inhibiting DCIS growth and progression promoted by FGFR1 signaling.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Transformação Celular Neoplásica/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Mama/citologia , Mama/patologia , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Carcinoma Intraductal não Infiltrante/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Células Epiteliais , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Esferoides Celulares , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Small ; 14(26): e1801273, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29808580

RESUMO

Silicon carbide (SiC) with epitaxial graphene (EG/SiC) shows a great potential in the applications of electronic and photoelectric devices. The performance of devices is primarily dependent on the interfacial heterojunction between graphene and SiC. Here, the band structure of the EG/SiC heterojunction is experimentally investigated by Kelvin probe force microscopy. The dependence of the barrier height at the EG/SiC heterojunction to the initial surface state of SiC is revealed. Both the barrier height and band bending tendency of the heterojunction can be modulated by controlling the surface state of SiC, leading to the tuned carrier transport behavior at the EG/SiC interface. The barrier height at the EG/SiC(000-1) interface is almost ten times that of the EG/SiC(0001) interface. As a result, the amount of carrier transport at the EG/SiC(000-1) interface is about ten times that of the EG/SiC(0001) interface. These results offer insights into the carrier transport behavior at the EG/SiC heterojunction by controlling the initial surface state of SiC, and this strategy can be extended in all devices with graphene as the top layer.

18.
Opt Express ; 26(4): 5043-5051, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475346

RESUMO

Silicon photonics has been longing for an efficient on-chip light source that is electrically driven at room temperature. Microdisk laser featured with low-loss whispering gallery modes can emit directional lasing beam through a closely coupled on-chip waveguide efficiently, and hence is particularly suitable for photonics integration. The realization of electrically pumped III-nitride microdisk laser grown on Si has been impeded by the conventional undercut structure, poor material quality, and a limited quality of GaN microdisk formed by dry etching. Here we report a successful fabrication of room-temperature electrically pumped InGaN-based microdisk lasers grown on Si. A dramatic narrowing of the electroluminescence spectral line-width and a clear discontinuity in the slope of light output power plotted as a function of the injection current provide an unambiguous evidence of lasing. This is the first observation of electrically pumped lasing in InGaN-based microdisk lasers grown on Si at room temperature.

19.
Opt Express ; 22(20): 24286-93, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25322003

RESUMO

An enhanced spectral response was realized in an AlGaN-based solar-blind ultraviolet (SB-UV) detector using aluminum (Al) nanoparticles (NPs) of 20-60 nm. The peak responsivity of the detector (about 288 nm) with 60 nm Al NPs is more than two times greater than that of a detector without Al NPs under a 5-V bias, reaching 0.288 A/W. To confirm the enhancement mechanism of the Al NPs, extinction spectra were simulated using time-domain and frequency-domain finite-element methods. The calculation results show that the dipole surface plasmon resonance wavelength of the Al NPs is localized near the peak responsivity position of AlGaN-based SB-UV detectors. Thus, the improvement in the detectors can be ascribed to the localized surface plasmon resonance effect of the Al NPs. The localized electric field enhancement and related scattering effect result in the generation of more electron-hole pairs and thus a higher responsivity. In addition, the dark current of AlGaN-based SB-UV detectors does not increase after the deposition of Al nanoparticles. The results presented here is promising for applications of AlGaN-based SB-UV detectors.

20.
Heliyon ; 10(5): e27571, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495179

RESUMO

The role of fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) demethylase, in non-small cell lung cancer (NSCLC) has recently received widespread attention. However the underlying mechanisms of FTO-mediated autophagy regulation in NSCLC progression remain elusive. In this study, we found that FTO was significantly upregulated in NSCLC, and downregulation of FTO suppressed the growth, invasion and migration of NSCLC cells by inducing autophagy. FTO knockdown resulted in elevated m6A levels in NSCLC cells. Methylated RNA immunoprecipitation sequencing showed that sestrin 2 (SESN2) was involved in m6A regulation during autophagy in NSCLC cells. Interestingly, m6A modifications in exon 9 of SESN2 regulated its stability. FTO deficiency promoted the binding of insulin-like growth factor 2 mRNA-binding protein 1 to SESN2 mRNA, enhancing its stability and elevating its protein expression. FTO inhibited autophagic flux by downregulating SESN2, thereby promoting the growth, invasion and migration of NSCLC cells. Besides, the mechanism by which FTO blocked SESN2-mediated autophagy activation was associated with the AMPK-mTOR signaling pathway. Taken together, these findings uncover an essential role of the FTO-autophagy-SESN2 axis in NSCLC progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA