RESUMO
The microbial terroir is an indispensable part of the terroir panorama, and can improve wine quality with special characteristics. In this study, eight autochthonous yeasts (Saccharomyces cerevisiae), selected in Huailai country, China, were trailed in small-scale and pilot fermentations for both white (Riesling and Sémillon) and red (Cabernet Sauvignon and Syrah) wines and evaluated by GC-MS analysis and the rate-all-that-apply (RATA) method. Compared to commercial yeast strains, the indigenous yeasts were able to produce higher concentrations of ethyl esters and fatty acid ethyl esters, and higher alcohol, resulting in higher odor activity values of fruity, floral attributes. Marked varietal effects were observed in the pilot fermentation, but yeast strains exerted a noticeable impact in modulating wine aroma and sensory profile. Overall, indigenous yeast could produce more preferred aroma compounds and sensory characteristics for both white and red wines, demonstrating the potential for improving wine quality and regional characteristics.
Assuntos
Fermentação , Odorantes , Saccharomyces cerevisiae , Vinho , Vinho/análise , Vinho/microbiologia , Saccharomyces cerevisiae/metabolismo , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Leveduras/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , ChinaRESUMO
Rayleigh-Taylor (RT) instability is a basic fluid interface instability that widely exists in nature and in the engineering field. To investigate the impact of the initial inclined interface on compressible RT instability, the two-component discrete Boltzmann method is employed. Both the thermodynamic non-equilibrium (TNE) and hydrodynamic non-equilibrium (HNE) effects are studied. It can be found that the global average density gradient in the horizontal direction, the non-organized energy fluxes, the global average non-equilibrium intensity and the proportion of the non-equilibrium region first increase and then reduce with time. However, the global average density gradient in the vertical direction and the non-organized moment fluxes first descend, then rise, and finally descend. Furthermore, the global average density gradient, the typical TNE intensity and the proportion of non-equilibrium region increase with increasing angle of the initial inclined interface. Physically, there are three competitive mechanisms: (1) As the perturbed interface elongates, the contact area between the two fluids expands, which results in an increasing gradient of macroscopic physical quantities and leads to a strengthening of the TNE effects. (2) Under the influence of viscosity, the perturbation pressure waves on both sides of the material interface decrease with time, which makes the gradient of the macroscopic physical quantity decrease, resulting in a weakening of the TNE strength. (3) Due to dissipation and/or mutual penetration of the two fluids, the gradient of macroscopic physical quantities gradually diminishes, resulting in a decrease in the intensity of the TNE.
RESUMO
To elucidate the effects of the different terroir on wine aroma in six sub-regions of Eastern Foothills of Helan Mountain in Ningxia, a premium wine-producing region in China, 71 Cabernet Sauvignon wines were investigated by gas chromatography-mass spectrometry (GC-MS), check-all-that-apply (CATA), and quantitative descriptive analysis (QDA). The bidirectional orthogonal partial least squares-discriminant analysis (O2PLS-DA) results showed that the Cabernet Sauvignon dry red wines from Xixia (XX) and Yongning (YN) had similar volatile profiles due to their geographical proximity and were characterized by higher concentrations of esters, higher alcohols, and volatile phenols because the similar aromatic profiles were detected in their dry red wines. Shizuishan (SZS) and Hongsipu (HSP) wines showed clear differences compared to the wines of the other four sub-regions, being mainly characterized by relatively higher phenolic aldehydes and volatile phenols. The concentrations of methoxypyrazines and norisoprenoids varied mainly depending on the climate diversity of the sub-regions. The highest 3-isobutyl-2-methoxypyrazine (IBMP) concentration was presented in the Helan (HL) wines. The Qingtongxia (QTX) wines have the highest ß-damascenone, which might be influenced by the fact that QTX has the lowest effective accumulated temperature and the highest sunshine duration among the five sub-regions. Esters including ethyl octanoate, ethyl decanoate, ethyl butanoate, ethyl hexanoate, and isoamyl acetate were the highest in HL. Additionally, the herbaceous, black berry, and red berry notes in HL and QTX were the most outstanding.
Assuntos
Vitis , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Bebidas Alcoólicas/análise , Fenóis/análise , Ésteres/análise , China , Vitis/química , Compostos Orgânicos Voláteis/análiseRESUMO
Color is one of the most distinctive qualities of red wine. Despite new knowledge in the field of pigment identification, copigmentation, and oxidation being forthcoming, there is still a large gap between the fundamental research and practical winemaking outcomes. A state-of-art review from these two aspects is, therefore, necessary. This review first introduces updated knowledge about the primary pigments in wine, with emphasis on their physicochemical properties. Then, the mechanisms of copigmentation and oxidation are elucidated in detail, along with their relative contributions to wine color. Finally, the practical effects of copigmentation and micro-oxygenation (MOX) in winemaking are summarized and discussed. In general, wine coloration is ultimately determined by the anthocyanin flavylium cation, which is greatly influenced by wine pH. In young red wine, grape-derived anthocyanins and nonanthocyanin polyphenols (as copigments) are the foundation for wine coloration. During aging and storage, anthocyanin derivatives are formed via various chemical reactions, where moderate oxidation plays a vital role, whereas copigmentation constantly decreases. The essence of wine color evolution relates to the changes of physicochemical properties of primary pigments in wine, where the hydration equilibrium gradually diminishes. In practice, the effects of copigment addition and MOX during real vinification can be viewed as somewhat controversial, considering that many studies showed different effects on wine color and pigment concentration. Universal features can be summarized but some phenomena still remain unclear and deserve further exploration.
Assuntos
Vitis , Vinho , Antocianinas/análise , Antocianinas/química , Cor , Polifenóis , Vitis/química , Vinho/análiseRESUMO
Based on the framework of our previous work [H.L. Lai et al., Phys. Rev. E, 94, 023106 (2016)], we continue to study the effects of Knudsen number on two-dimensional Rayleigh-Taylor (RT) instability in compressible fluid via the discrete Boltzmann method. It is found that the Knudsen number effects strongly inhibit the RT instability but always enormously strengthen both the global hydrodynamic non-equilibrium (HNE) and thermodynamic non-equilibrium (TNE) effects. Moreover, when Knudsen number increases, the Kelvin-Helmholtz instability induced by the development of the RT instability is difficult to sufficiently develop in the later stage. Different from the traditional computational fluid dynamics, the discrete Boltzmann method further presents a wealth of non-equilibrium information. Specifically, the two-dimensional TNE quantities demonstrate that, far from the disturbance interface, the value of TNE strength is basically zero; the TNE effects are mainly concentrated on both sides of the interface, which is closely related to the gradient of macroscopic quantities. The global TNE first decreases then increases with evolution. The relevant physical mechanisms are analyzed and discussed.
RESUMO
In this work, we develop a mesoscopic lattice Boltzmann Bhatnagar-Gross-Krook (BGK) model to solve (2 + 1)-dimensional wave equation with the nonlinear damping and source terms. Through the Chapman-Enskog multiscale expansion, the macroscopic governing evolution equation can be obtained accurately by choosing appropriate local equilibrium distribution functions. We validate the present mesoscopic model by some related issues where the exact solution is known. It turned out that the numerical solution is in very good agreement with exact one, which shows that the present mesoscopic model is pretty valid, and can be used to solve more similar nonlinear wave equations with nonlinear damping and source terms, and predict and enrich the internal mechanism of nonlinearity and complexity in nonlinear dynamic phenomenon.
RESUMO
In this paper, a new lattice Boltzmann model for the two-component system of coupled sine-Gordon equations is presented by using the coupled mesoscopic Boltzmann equations. Via the Chapman-Enskog multiscale expansion, the macroscopical governing evolution system can be recovered correctly by selecting suitable discrete equilibrium distribution functions and the amending functions. The mesoscopic model has been validated by several related issues where analytic solutions are available. The experimental results show that the numerical results are consistent with the analytic solutions. From the mesoscopic point of view, the present approach provides a new way for studying the complex nonlinear partial differential equations arising in natural nonlinear phenomena of engineering and science.
RESUMO
The evolution of volatile esters leads to changes in wine aroma during aging. In this study, polyphenol effect on ester equilibrium in wines was investigated through three aging experiments. Kinetic parameters of esters were calculated in four red wines. Results showed that the reaction rate constant (kobsd) was mainly determined by the molar concentration ratio of alcohols or acids to the corresponding esters. Phenolic matrix was more likely to influence the activation energy (Ea). Higher contents of total polyphenol led to the increase of Ea, resulting in the reactions less prone to happen but more susceptible to temperature changes. Combined with the practical wine aging and exogenous polyphenol addition experiments, the impact of polyphenol composition was revealed. Flavanols with higher polymerization degrees were found more beneficial for ester preservation than monomer flavanols or anthocyanins. This work could provide theoretical guidance in enhancing fruity aroma in wines via modulating phenolic matrix.
RESUMO
The greenhouse effect is a global problem. In view of the intense sunlight radiation in Ningxia (an ideal wine-producing region in northwestern China), the effect of light-selective sunshade nets of different colors (black, red and white) on the quality and aromatic characteristics of grapes and wine was studied. With the treatments of different nets, the solar radiation intensity was significantly decreased. The sugar contents in both grapes and wines decreased, while the acid contents increased. The contents of total phenols, tannins and flavanols in grapes were increased, while the total flavonoids and anthocyanins were decreased. The contents of most phenolics in wine were increased. The contents of most aromas in grapes and wines under nets were higher than those in the control group. The black group usually possessed the highest variety and content. Red and black nets improved the fruity, floral and sweet aromas of grapes. The white net decreased the green and citrusy aromas.
RESUMO
As one of the most promising wine regions in China, the eastern foothills of the Helan Mountain (EFHM) in the Ningxia Hui Autonomous Region has attracted great attention recently. Geographically, EFHM is divided into six sub-regions, namely Shizuishan, Xixia, Helan, Qingtongxia, Yongning and Hongsipu. However, there have been few reports on the character and differences between wines in the six sub-regions. In this experiment, a total of 71 commercial Cabernet Sauvignon wines from six sub-regions were collected, and their phenolic compounds, visual properties and mouthfeel were investigated. The results showed that wines from the six sub-regions of EFHM showed distinctive phenolic profiles and could be distinguished through the OPLS-DA mode using 32 potential markers. In terms of color, Shizuishan wines showed higher a* values and lower b* values. The sensory evaluation showed that Hongsipu wines had higher astringency strength and lower tannin texture. The overall results implied that the phenolic compounds of wines in different sub-regions were affected by terroir conditions. To the best of our knowledge, this is the first time that a wide coverage of phenolic compounds has been analysed for wines from the sub-regions of EFHM, which could provide valuable information in deciphering the terroir of EFHM.
RESUMO
The grape quality might be affected if the solar intensity (SI) was too strong. In this study, the influence of light-exclusive films on the transcriptomic properties and metabolic substances of grapes were evaluated. The results showed that films, especially polycarbonate (PC), could significantly decrease the SI. The sugar content was obviously decreased, while the acid content was increased. The anthocyanin content was decreased, in contrast to the total polyphenols, flavonoids and tannins. The corresponding derivatives owned the same trend. Lots of differentially expressed genes (DEGs) were detected, especially under PC. The expression pattern and GO function enrichment of DEGs from PC significantly differed from other groups. DEGs enrichment also proved that films, especially PC, could significantly improve the contents of tannins, flavonoids and other polyphenols. VvUFGT, VvF3'5'H, VvLDOX, VvLAR1 and VvANR were confirmed to be the key genes in the biosynthetic pathway of polyphenols under different films.