Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703081

RESUMO

A fundamental question in developmental biology is how to regulate grain size to improve crop yields. Despite this, little is still known about the genetics and molecular mechanisms regulating grain size in crops. Here, we provide evidence that a putative protein kinase-like (OsLCD3) interacts with the S-adenosyl-L-methionine synthetase 1 (OsSAMS1) and determines the size and weight of grains. OsLCD3 mutation (lcd3) significantly increased grain size and weight by promoting cell expansion in spikelet hull, whereas its overexpression caused negative effects, suggesting that grain size was negatively regulated by OsLCD3. Importantly, lcd3 and OsSAMS1 overexpression (SAM1OE) led to large and heavy grains, with increased ethylene and decreased polyamines production. Based on genetic analyses, it appears that OsLCD3 and OsSAMS1 control rice grain size in part by ethylene/polyamine homeostasis. The results of this study provide a genetic and molecular understanding of how the OsLCD3-OsSAMS1 regulatory module regulates grain size, suggesting that ethylene/polyamine homeostasis is an appropriate target for improving grain size and weight.

2.
J Hepatol ; 80(3): 454-466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37952766

RESUMO

BACKGROUND & AIMS: Hereditary tyrosinemia type 1 (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury. Therapeutic options for HT1 remain limited. In this study, we aimed to construct an engineered bacterium capable of reprogramming host metabolism and thereby provide a potential alternative approach for the treatment of HT1. METHODS: Escherichia coli Nissle 1917 (EcN) was engineered to express genes involved in tyrosine metabolism in the anoxic conditions that are characteristic of the intestine (EcN-HT). Bodyweight, survival rate, plasma (tyrosine/liver function), H&E staining and RNA sequencing were used to assess its ability to degrade tyrosine and protect against lethal liver injury in Fah-knockout (KO) mice, a well-accepted model of HT1. RESULTS: EcN-HT consumed tyrosine and produced L-DOPA (levodopa) in an in vitro system. Importantly, in Fah-KO mice, the oral administration of EcN-HT enhanced tyrosine degradation, reduced the accumulation of toxic metabolites, and protected against lethal liver injury. RNA sequencing analysis revealed that EcN-HT rescued the global gene expression pattern in the livers of Fah-KO mice, particularly of genes involved in metabolic signaling and liver homeostasis. Moreover, EcN-HT treatment was found to be safe and well-tolerated in the mouse intestine. CONCLUSIONS: This is the first report of an engineered live bacterium that can degrade tyrosine and alleviate lethal liver injury in mice with HT1. EcN-HT represents a novel engineered probiotic with the potential to treat this condition. IMPACT AND IMPLICATIONS: Patients with hereditary tyrosinemia type 1 (HT1) are characterized by an inability to metabolize tyrosine normally and suffer from liver failure, renal dysfunction, neurological impairments, and cancer. Given the overlap and complementarity between the host and microbial metabolic pathways, the gut microbiome provides a potential chance to regulate host metabolism through degradation of tyrosine and reduction of byproducts that might be toxic. Herein, we demonstrated that an engineered live bacterium, EcN-HT, could enhance tyrosine breakdown, reduce the accumulation of toxic tyrosine byproducts, and protect against lethal liver injury in Fah-knockout mice. These findings suggested that engineered live biotherapeutics that can degrade tyrosine in the gut may represent a viable and safe strategy for the prevention of lethal liver injury in HT1 as well as the mitigation of its associated pathologies.


Assuntos
Tirosinemias , Humanos , Camundongos , Animais , Tirosinemias/complicações , Tirosinemias/genética , Tirosinemias/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Camundongos Knockout , Tirosina/metabolismo , Escherichia coli/genética
3.
Curr Issues Mol Biol ; 45(8): 6743-6774, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623246

RESUMO

Intestinal inflammation and dysbiosis can lead to inflammatory bowel diseases (IBD) and systemic inflammation, affecting multiple organs. Developing novel anti-inflammatory therapeutics is crucial for preventing IBD progression. Serotonin receptor type 2A (5-HT2A) ligands, including psilocybin (Psi), 4-Acetoxy-N,N-dimethyltryptamine (4-AcO-DMT), and ketanserin (Ket), along with transient receptor potential (TRP) channel ligands like capsaicin (Cap), curcumin (Cur), and eugenol (Eug), show promise as anti-inflammatory agents. In this study, we investigated the cytotoxic and anti-inflammatory effects of Psi, 4-AcO-DMT, Ket, Cap, Cur, and Eug on human small intestinal epithelial cells (HSEIC). HSEIC were exposed to tumor necrosis factor (TNF)-α and interferon (IFN)-γ for 24 h to induce an inflammatory response, followed by treatment with each compound at varying doses (0-800 µM) for 24 to 96 h. The cytotoxicity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and protein expression by Western blot (WB) analysis. As single treatments, Psi (40 µM), Cur (0.5 µM), and Eug (50 µM) significantly reduced COX-2 levels without cytotoxic effects. When combined, Psi (40 µM) and Cur (0.5 µM) exhibited synergy, resulting in a substantial decrease in COX-2 protein levels (-28× fold change), although the reduction in IL-6 was less pronounced (-1.6× fold change). Psi (20 µM) and Eug (25 µM) demonstrated the most favorable outcomes, with significant decreases in COX-2 (-19× fold change) and IL-6 (-10× fold change) protein levels. Moreover, the combination of Psi and Eug did not induce cytotoxic effects in vitro at any tested doses. This study is the first to explore the anti-inflammatory potential of psilocybin and 4-AcO-DMT in the intestines while highlighting the potential for synergy between the 5-HT2A and TRP channel ligands, specifically Psi and Eug, in alleviating the TNF-α/IFN-γ-induced inflammatory response in HSEIC. Further investigations should evaluate if the Psi and Eug combination has the therapeutic potential to treat IBD in vivo.

4.
Cancer Cell Int ; 23(1): 277, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978523

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with a high mortality and poor survival rate. Abnormal tumor metabolism is considered a hallmark of HCC and is a potential therapeutic target. This study aimed to identify metabolism-related biomarkers to evaluate the prognosis of patients with HCC. METHOD: The Cancer Genome Atlas (TCGA) database was used to explore differential metabolic pathways based on high and low epithelial-mesenchymal transition (EMT) groupings. Genes in differential metabolic pathways were obtained for HCC metabolism-related molecular subtype analysis. Differentially expressed genes (DEGs) from the three subtypes were subjected to Lasso Cox regression analysis to construct prognostic risk models. Stard5 expression in HCC patients was detected by western blot and immunohistochemistry (IHC), and the role of Stard5 in the metastasis of HCC was investigated by cytological experiments. RESULTS: Unsupervised clustering analysis based on metabolism-related genes revealed three subtypes in HCC with differential prognosis. A risk prognostic model was constructed based on 11 genes (STARD5, FTCD, SCN4A, ADH4, CFHR3, CYP2C9, CCL14, GADD45G, SOX11, SCIN, and SLC2A1) obtained by LASSO Cox regression analysis of the three subtypes of DEGs. We validated that the model had a good predictive power. In addition, we found that the high-risk group had a poor prognosis, higher proportion of Tregs, and responded poorly to chemotherapy. We also found that Stard5 expression was markedly decreased in HCC tissues, which was associated with poor prognosis and EMT. Knockdown of Stard5 contributed to the invasion and migration of HCC cells. Overexpression of Stard5 inhibited EMT in HCC cells. CONCLUSION: We developed a new model based on 11 metabolism-related genes, which predicted the prognosis and response to chemotherapy or immunotherapy for HCC. Notably, we demonstrated for the first time that Stard5 acted as a tumor suppressor by inhibiting metastasis in HCC.

5.
Cancer Cell Int ; 23(1): 52, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959615

RESUMO

BACKGROUND: Abnormal miRNA and mRNA expression and dysregulated immune microenvironment have been found to frequently induce the progression of hepatocellular carcinoma (HCC) in recent reports. In particular, the immune-related competing endogenous RNAs (ceRNA) mechanism plays a crucial role in HCC progression. However, the underlying mechanisms remain unclear. METHODS: Differentially expressed immune-related genes were obtained from the Immport, GEO, and TCGA databases. The mRNA and protein expression levels in HCC tissues and adjacent normal tissues were confirmed, and we further investigated the methylation levels of these biomarkers to explore their function. Then, the TIMER and TISCH databases were used to assess the relationship between immune infiltration and hub genes. Survival analysis and univariate and multivariate Cox models were used to evaluate the association between hub genes and HCC diagnosis. Hub gene expression was experimentally validated in six HCC cell lines and 15 HCC samples using qRT-PCR and immunohistochemistry. The hub genes were uploaded to DSigDB for drug prediction enrichment analysis. RESULTS: We identified that patients with abnormal miRNAs (hsa-miR-125b-5p and hsa-miR-21-5p) and their targeted genes (NTF3, PSMD14, CD320, and SORT1) had a worse prognosis. Methylation analysis of miRNA-targeted genes suggested that alteration of methylation levels is also a factor in the induction of tumorigenesis. We also found that the development of HCC progression caused by miRNA-mRNA interactions may be closely correlated with the infiltration of immunocytes. Moreover, the GSEA, GO, and KEGG analysis suggested that several common immune-related biological processes and pathways were related to miRNA-targeted genes. The results of qRT-PCR, immunohistochemistry, and western blotting were consistent with our bioinformatics results, suggesting that abnormal miRNAs and their targeted genes may affect HCC progression. CONCLUSIONS: Briefly, our study systematically describes the mechanisms of miRNA-mRNA interactions in HCC and predicts promising biomarkers that are associated with immune filtration for HCC progression.

6.
Int J Neurosci ; : 1-10, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37933491

RESUMO

OBJECTIVE: To investigate secondary adrenal insufficiency post varying traumatic brain injuries' and its impact on prognosis. METHODS: 120 traumatic brain injury patients were categorized into mild, moderate and severe groups based on Glasgow Coma Scale. Adrenal function was evaluated through testing. RESULTS: Secondary adrenal insufficiency rates were 0% (mild), 22.85% (moderate) and 44.82% (severe). Hypothalamus-pituitary-adrenal axis dysfunction rates were 14.81% (mild), 42.85% (moderate) and 63.79% (severe). Differences among groups were significant (p < .05). Patients with intact hypothalamus-pituitary-adrenal axis had shorter hospital stays and higher Glasgow Coma Scale scores. Receiver operating characteristic analysis of 24-h urinary free cortisol showed an area of 0.846, with a 17.62 µg/24h cutoff, 98.32% sensitivity and 52.37% specificity. In the low-dose adrenocorticotropic hormone test, with an 18 µg/dL cutoff, the receiver operating characteristic area was 0.546, with 46.28% sensitivity and 89.39% specificity. CONCLUSION: As traumatic brain injury severity increases, secondary adrenal insufficiency incidence rises. The low-dose adrenocorticotropic hormone test is promising for hypothalamus-pituitary-adrenal axis evaluation. Patients with hypothalamus-pituitary-adrenal dysfunction experience prolonged hospitalization and worse prognosis.

7.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005341

RESUMO

Inflammation is a natural immune response to injury, infection, or tissue damage. It plays a crucial role in maintaining overall health and promoting healing. However, when inflammation becomes chronic and uncontrolled, it can contribute to the development of various inflammatory conditions, including type 2 diabetes. In type 2 diabetes, pancreatic ß-cells have to overwork and the continuous impact of a high glucose, high lipid (HG-HL) diet contributes to their loss and dedifferentiation. This study aimed to investigate the anti-inflammatory effects of eugenol and its impact on the loss and dedifferentiation of ß-cells. THP-1 macrophages were pretreated with eugenol for one hour and then exposed to lipopolysaccharide (LPS) for three hours to induce inflammation. Additionally, the second phase of NLRP3 inflammasome activation was induced by incubating the LPS-stimulated cells with adenosine triphosphate (ATP) for 30 min. The results showed that eugenol reduced the expression of proinflammatory genes, such as IL-1ß, IL-6 and cyclooxygenase-2 (COX-2), potentially by inhibiting the activation of transcription factors NF-κB and TYK2. Eugenol also demonstrated inhibitory effects on the levels of NLRP3 mRNA and protein and Pannexin-1 (PANX-1) activation, eventually impacting the assembly of the NLRP3 inflammasome and the production of mature IL-1ß. Additionally, eugenol reduced the elevated levels of adenosine deaminase acting on RNA 1 (ADAR1) transcript, suggesting its role in post-transcriptional mechanisms that regulate inflammatory responses. Furthermore, eugenol effectively decreased the loss of ß-cells in response to HG-HL, likely by mitigating apoptosis. It also showed promise in suppressing HG-HL-induced ß-cell dedifferentiation by restoring ß-cell-specific biomarkers. Further research on eugenol and its mechanisms of action could lead to the development of therapeutic interventions for inflammatory disorders and the preservation of ß-cell function in the context of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Eugenol/farmacologia , Eugenol/metabolismo , Desdiferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Glucose/metabolismo
8.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764262

RESUMO

Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.


Assuntos
Canabinol , Inflamassomos , Humanos , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/farmacologia , Proteínas do Tecido Nervoso , Conexinas
9.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985596

RESUMO

Inflammation is an organism's biological defense mechanism. Acute and chronic inflammation of the body triggers the production of pro- and anti-inflammatory pathways that can affect the content of cytokines in the brain and thus cause brain inflammation. Disorders such as depression and posttraumatic stress disorder (PTSD) are often associated with elevated inflammation. Recently, positive and promising clinical results of psilocybin for the treatment of depression and PTSD were reported. Thus, we decided to test whether psilocybin alone or in combination with eugenol, an anti-inflammatory and antioxidant agent, would prevent the increase in or decrease the content of cytokines in the brain of C57BL/6J mice injected with lipopolysaccharides (LPS). Two experiments were performed, one with pre-treatment of mice through gavage with psilocybin (0.88 mg/kg), eugenol (17.6 mg/kg), or combinations of psilocybin and eugenol (1:10, 1:20, or 1:50), followed by intraperitoneal injection of LPS, and the second, post-treatment, with initial injection with LPS, followed by treatment with psilocybin, eugenol, or their combination. Brain tissues were collected, and cytokines were analyzed by qRT-PCR, Western blot, and ELISA. Data were analyzed with a one-way ANOVA followed by Tukey's post hoc test or with multiple unpaired t-tests. LPS upregulated mRNA expression of COX-2, TNF-α, IL-1ß, and IL-6. All pre-treatments decreased the expression of COX-2 and TNF-α, with psilocybin alone and in 1:50 combination, with eugenol being the most effective. In the post-treatment, all combinations of psilocybin and eugenol were effective in reducing inflammation, with the 1:50 ratio displaying the most prominent results in reducing the mRNA content of tested cytokines. Western blot analysis confirmed the effect on COX-2 and IL-1ß proteins. Finally, the ELISA showed that post-treatment with psilocybin + eugenol (1:50) demonstrated the best results, decreasing the expression of multiple markers including IL-6 and IL-8. This demonstrates the anti-inflammatory effects of a combination of psilocybin and eugenol in the brain of animals with systemically induced inflammation.


Assuntos
Encefalite , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/efeitos adversos , Eugenol/farmacologia , Eugenol/uso terapêutico , Interleucina-6 , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Ciclo-Oxigenase 2/genética , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro
10.
Yi Chuan ; 45(9): 845-855, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731238

RESUMO

Gibberellin (GA) is an important hormone, which is involved in regulating various growth and development. GA biosynthesis pathway and synthetase have been basically clarified. Gibberellin 3ß hydroxylase (GA3ox) is the key enzyme for the synthesis of various active GA. There are two GA3ox genes (OsGA3ox1 and OsGA3ox2) in rice, and their physiological functions have been preliminarily studied. However, it is not clear how they work together to synthesize active GA to regulate rice development. In this study, the knockout mutants ga3ox1 and ga3ox2 were obtained by CRISPR/Cas9 technology. The pollen fertility of ga3ox1 decreased significantly, while the plant height of ga3ox2 decreased significantly. It shows that OsGA3ox1 is necessary for normal pollen development, while OsGA3ox2 is necessary for stem and leaf elongation. Tissue expression analysis showed that OsGA3ox1 was mainly expressed in unopened flowers, while OsGA3ox2 was mainly expressed in unexpanded leaves. The GA in different tissues of wild type (WT), and two ga3ox mutants were detected. It was found that pollen fertility is most closely related to the content of GA7, and plant height is most closely related to the content of GA1. It was found that OsGA3ox1 catalyzes GA9 to GA7 in flowers, which is closely related to pollen fertility; OsGA3ox2 catalyzes the GA20 to GA1 in unexpanded leaves, thereby regulating plant height; OsGA3ox1 catalyzes the GA19 to GA20 in roots, regulating the generation of GA3. OsGA3ox1 and OsGA3ox2 respond to developmental and environmental signals, and cooperate to synthesize endogenous GA in different tissues to regulate rice development. This study provides a reference for clarifying its role in GA biosynthesis pathway and further understanding the function of OsGA3ox.


Assuntos
Oryza , Oryza/genética , Giberelinas , Pólen , Fertilidade/genética , Flores/genética
11.
J Transl Med ; 20(1): 379, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038907

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most malignant tumors to threaten human life, and the survival rate remains low due to delayed diagnosis. Meanwhile, lncRNAs have great potential for application in tumor prognosis, therefore relevant research in hepatocellular carcinoma is indispensable. METHODS: Based on the EZH2 expression, the differentially expressed lncRNAs DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified in hepatocellular carcinoma by using the TCGA database. Bioinformatics technology was utilized to determine the effect of key genes in HCC progression. The methylation and immune infiltration analyses were performed to explore the underlying function of hub genes. Finally, cellular function experiments were performed to investigate the association between identified genes and biological phenotypes in HCC. RESULTS: lncRNA-AC079061.1, hsa-miR-765, and VIPR1 were identified as independent factors that affect the prognosis of hepatocellular carcinoma. The immune infiltration analyses revealed that lncRNA-AC079061.1 can alter the immune microenvironment and thus inhibit the development of HCC by regulating the expression of an immune-related gene (VIPR1). Methylation analyses demonstrated that VIPR1 expression is negatively related to the methylation level in HCC. Experimental results suggested that lncRNA-AC079061.1 and VIPR1 were frequently downregulated in HCC cells, while hsa-miR-765 was significantly upregulated. Moreover, the lncRNA-AC079061.1/VIPR1 axis suppressed the proliferation and invasion of HCC cells. CONCLUSION: The present study identified the lncRNA-AC079061.1/VIPR1 axis as a novel biomarker that inhibited the proliferation and invasion of hepatocellular carcinoma, affecting the ultimate disease outcome.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/patologia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Microambiente Tumoral
12.
Inorg Chem ; 61(43): 17089-17100, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36240513

RESUMO

Luminescent lanthanide cages have many potential applications in guest recognition, sensing, magnetic resonance imaging (MRI), and bioimaging. However, these polynuclear lanthanide assemblies' poor stability, dispersity, and luminescence properties have significantly constrained their practical applications. Furthermore, it is still a huge challenge to simultaneously synthesize and design lanthanide organic polyhedra with high stability and quantum yield. Herein, we demonstrate a simple and robust strategy to improve the rigidity, chemical stability, and luminescence of an Eu(III) tetrahedral cage by introducing the conjugated planar auxiliary phen ligand. The self-assembled tetrahedral cage, (Eu4L4)(phen)4 [L = (4,4',4″-tris(4,4,4-trifluoro-1,3-dioxobutyl)-triphenylamine), phen = 1,10-phenanthroline], exhibited characteristic luminescence of Eu3+ ions with high quantum yield (41%) and long lifetime (131 µs) in toluene (1.0 × 10-6 M). Moreover, the Eu(III) cage was stable in water and even in an aqueous solution with a pH range of 1-14. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cellular imaging revealed that the Pluronic F127-coated hybrid material, (Eu4L4)(phen)4@F127, exhibited low cytotoxicity, good biocompatibility, and cellular imaging ability, which may inspire more insights into the development of lanthanide organic polyhedra (LOPs) for potential biomedical applications.


Assuntos
Európio , Elementos da Série dos Lantanídeos , Európio/química , Luminescência , Elementos da Série dos Lantanídeos/química , Fenantrolinas/química , Água/química
13.
J Chem Inf Model ; 62(3): 486-497, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35041411

RESUMO

Estrogen-related receptor α (ERRα), a member of nuclear receptors (NRs), plays a role in the regulation of cellular energy metabolism and is reported to be a novel potential target for type 2 diabetes therapy. To date, only a few agonists of ERRα have been identified to improve insulin sensitivity and decrease blood glucose levels. Herein, the discovery of novel potent agonists of ERRα determined using a combined virtual screening approach is described. Molecular dynamics (MD) simulations were used to obtain structural ensembles that can consider receptor flexibility. Then, an efficient virtual screening strategy with a combination of similarity search and ensemble docking was performed against the Enamine, SPECS, and Drugbank databases to identify potent ERRα agonists. Finally, a total of 66 compounds were purchased for experimental testing. Biological investigation of promising candidates identified seven compounds that have activity against ERRα with EC50 values ranging from 1.11 to 21.70 µM, with novel scaffolds different from known ERRα agonists until now. Additionally, the molecule GX66 showed micromolar inverse activity against ERRα with an IC50 of 0.82 µM. The predicted binding modes showed that these compounds were anchored in ERRα-LBP via interactions with several residues of ERRα. Overall, this study not only identified the novel potent ERRα agonists or an inverse agonist that would be the promising starting point for further exploration but also demonstrated a successful molecular dynamics-guided approach applicable in virtual screening for ERRα agonists.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Simulação de Dinâmica Molecular , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
14.
Ophthalmic Res ; 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36412625

RESUMO

Introduction To investigate the effect of Curcumin on retinal neovascularization in mice with oxygen-induced lesions. Methods 7-day-old (P7) C57/BL6J mice were randomly divided into control group, OIR group, DMSO group, 100 mg/kg, 50 mg/kg and 25 mg/kg curcumin group and Lucentis group (15 mice per group). Mice in the experimental group were fed for 5 days in high oxygen partial pressure environment, and then in normal oxygen air environment for another 5 days. Corresponding interventions were given at 12-16 days of age (P12-16). At 17 days of age (P17), the eyeball was removed and the retina was paved with Isolectin GS-IB4 fluorescence staining. Real-time PCR was used to detect VEGF mRNA levels in tissues and cells. The protein expression level of VEGF was detected by Western blot. Results Immunofluorescence showed that curcumin injection could significantly reduce the formation of retinal neovascularization and astrocyte injury in OIR, and 100 mg/kg curcumin group had the best effect. Compared with the control group, mRNA and protein expression of VEGF in retina of mice in OIR and DMSO groups were significantly up-regulated (P<0.05); Compared with OIR group, curcumin group and Lucentis group were down-regulated (P<0.05). The protein expression and mRNA level of VEGF in HRCECs of curcumin group decreased with the increase of curcumin concentration, and the effect of curcumin group at 80µmol/L was similar to that of Lucentis group. In the HRCECs cultured with the same concentration of curcumin, the protein expression and mRNA level of VEGF decreased with the prolongation of drug intervention time. Conclusion Curcumin can down-regulate the expression of VEGF in retinal tissues and cells, thereby inhibiting retinal neovascularization and HRCECs cell proliferation.

15.
J Dairy Sci ; 105(12): 10007-10019, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36241438

RESUMO

Amino acids are primarily absorbed in the ruminant small intestine, and the small intestine is a target organ prone to oxidative stress, causing intestinal disfunction. Previous study suggested that l-Trp could benefit intestinal function and production performance. This study aimed to explore the effects of l-Trp on hydrogen peroxide (H2O2)-induced oxidative injury in bovine intestinal epithelial cells (BIEC) and the potential mechanism. The effects of l-Trp on cell apoptosis, antioxidative capacity, AA transporters, and the mammalian target of rapamycin (mTOR) signaling pathway were evaluated in BIEC treated with 0.8 mMl-Trp for 2 hours combined with or without H2O2 induction. In addition, to explore whether the effects of 0.8 mMl-Trp on oxidative stress were related to mTOR, an mTOR-specific inhibitor was used. The percentage of apoptosis was measured using flow cytometry. The relative gene abundance and protein expression in BIEC were determined using real-time PCR and Western blot assay, respectively. Results showed l-Trp at 0.4 and 0.8 mM enhanced the cell viability, and it was inhibited by l-Trp at 6.4 mM. l-Tryptophan at 0.4, 0.8, and 1.6 mM remarkably decreased the percentage of apoptosis and enhanced antioxidative capacity in H2O2-mediated BIEC. Moreover, l-Trp at 0.8 mM increased the relative gene abundance and protein expression of antioxidative enzymes and AA transporters, and the mTOR signaling pathway. The mTOR inhibitor lowered the protein expression of large neutral amino acid transporter 1, but the inhibition of mTOR did not alter the activities of catalase and superoxide dismutase or protein expression of alanine-serine-cysteine transporter 2 with or without H2O2 induction. l-Tryptophan increased catalase and superoxide dismutase activities in H2O2-mediated BIEC, although not with a present mTOR inhibitor. l-Tryptophan increased the protein expression of large neutral amino acid transporter 1 and alanine-serine-cysteine transporter 2 in H2O2-mediated BIEC with or without the presence of an mTOR inhibitor. The present work suggested that l-Trp supplementation could alleviate oxidative injury in BIEC by promoting antioxidative capacity and inhibiting apoptosis, and the mTOR signal played vital roles in the alleviation.


Assuntos
Peróxido de Hidrogênio , Triptofano , Bovinos , Animais , Peróxido de Hidrogênio/farmacologia , Triptofano/farmacologia , Triptofano/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Cisteína/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Apoptose , Células Epiteliais/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Serina , Alanina/metabolismo , Mamíferos/metabolismo
16.
J Adolesc ; 94(5): 718-727, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652631

RESUMO

INTRODUCTION: While abundant cross-sectional studies have examined the relationship between stress and problematic internet use (PIU), little is known about the underlying mechanism through which stress influences the development of PIU. To elucidate the mechanism in facilitation of prevention and treatment of PIU, this study tested a moderated mediation model using a longitudinal design in which the impact of stressful life events on PIU was mediated by psychological capital (PsyCap); the dependence of this mediation link on participants' developmental stage was further evaluated. METHODS: A total of 1365 middle school and high school adolescents (Mage = 14.68, SD = 1.56; 47% female) from central China were surveyed over 3 years. RESULTS: PsyCap was found to completely mediate the contribution of stressful life events to PIU. In addition, the relationship between stressful life events and PsyCap was moderated by participants' school level, in which the negative impact of stress on PsyCap was stronger in middle schoolers than in high schoolers. CONCLUSIONS: These findings support further examination of PsyCap in adolescents' PIU development, with a special focus on developmental changes from middle school to high school.


Assuntos
Comportamento do Adolescente , Comportamento Aditivo , Adolescente , Comportamento do Adolescente/psicologia , Comportamento Aditivo/psicologia , Estudos Transversais , Feminino , Humanos , Internet , Uso da Internet , Masculino , Instituições Acadêmicas
17.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682919

RESUMO

Sugarcane (Saccharum officinarum L.) is one of the world's highly significant commercial crops. The amounts of synthetic nitrogen (N2) fertilizer required to grow the sugarcane plant at its initial growth stages are higher, which increases the production costs and adverse environmental consequences globally. To combat this issue, sustainable environmental and economic concerns among researchers are necessary. The endophytic diazotrophs can offer significant amounts of nitrogen to crops through the biological nitrogen fixation mediated nif gene. The nifH gene is the most extensively utilized molecular marker in nature for studying N2 fixing microbiomes. The present research intended to determine the existence of novel endophytic diazotrophs through culturable and unculturable bacterial communities (EDBCs). The EDBCs of different tissues (root, stem, and leaf) of five sugarcane cultivars (Saccharum officinarum L. cv. Badila, S. barberi Jesw.cv Pansahi, S. robustum, S. spontaneum, and S. sinense Roxb.cv Uba) were isolated and molecularly characterized to evaluate N2 fixation ability. The diversity of EDBCs was observed based on nifH gene Illumina MiSeq sequencing and a culturable approach. In this study, 319766 operational taxonomic units (OTUs) were identified from 15 samples. The minimum number of OTUs was recorded in leaf tissues of S. robustum and maximum reads in root tissues of S. spontaneum. These data were assessed to ascertain the structure, diversity, abundance, and relationship between the microbial community. A total of 40 bacterial families with 58 genera were detected in different sugarcane species. Bacterial communities exhibited substantially different alpha and beta diversity. In total, 16 out of 20 genera showed potent N2-fixation in sugarcane and other crops. According to principal component analysis (PCA) and hierarchical clustering (Bray-Curtis dis) evaluation of OTUs, bacterial microbiomes associated with root tissues differed significantly from stem and leaf tissues of sugarcane. Significant differences often were observed in EDBCs among the sugarcane tissues. We tracked and validated the plethora of individual phylum strains and assessed their nitrogenase activity with a culture-dependent technique. The current work illustrated the significant and novel results of many uncharted endophytic microbial communities in different tissues of sugarcane species, which provides an experimental system to evaluate the biological nitrogen fixation (BNF) mechanism in sugarcane. The novel endophytic microbial communities with N2-fixation ability play a remarkable and promising role in sustainable agriculture production.


Assuntos
Microbiota , Saccharum , Bactérias/genética , Humanos , Nitrogênio , Fixação de Nitrogênio , Saccharum/genética
18.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144796

RESUMO

Cannabis sativa is one of the oldest cultivated plants. Many of the medicinal properties of cannabis are known, although very few cannabis-based formulations became prescribed drugs. Previous research demonstrated that cannabis varieties are very different in their medicinal properties, likely due to the entourage effect-the synergistic or antagonistic effect of various cannabinoids and terpenes. In this work, we analyzed 25 cannabis extracts containing high levels of delta-9-tetrahydrocannabinol (THC). We used HCC1806 squamous cell carcinoma and demonstrated various degrees of efficiency of the tested extracts, from 66% to 92% of growth inhibition of cancer cells. Inflammation was tested by induction of inflammation with TNF-α/IFN-γ in WI38 human lung fibroblasts. The efficiency of the extracts was tested by analyzing the expression of COX2 and IL6; while some extracts aggravated inflammation by increasing the expression of COX2/IL6 by 2-fold, other extracts decreased inflammation, reducing expression of cytokines by over 5-fold. We next analyzed the level of THC, CBD, CBG and CBN and twenty major terpenes and performed clustering and association analysis between the chemical composition of the extracts and their efficiency in inhibiting cancer growth and curbing inflammation. A positive correlation was found between the presence of terpinene (pval = 0.002) and anti-cancer property; eucalyptol came second, with pval of 0.094. p-cymene and ß-myrcene positively correlated with the inhibition of IL6 expression, while camphor correlated negatively. No significant correlation was found for COX2. We then performed a correlation analysis between cannabinoids and terpenes and found a positive correlation for the following pairs: α-pinene vs. CBD, p-cymene vs. CBGA, terpenolene vs. CBGA and isopulegol vs. CBGA. Our work, thus, showed that most of high-THC extracts demonstrate anti-cancer activity, while only certain selected extracts showed anti-inflammatory activity. Presence of certain terpenes, such as terpinene, eucalyptol, cymene, myrcene and camphor, appear to have modulating effects on the activity of cannabinoids.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Anti-Inflamatórios/farmacologia , Cânfora , Canabidiol/análise , Agonistas de Receptores de Canabinoides , Canabinoides/análise , Canabinoides/farmacologia , Cannabis/química , Ciclo-Oxigenase 2 , Cimenos , Dronabinol/análise , Dronabinol/farmacologia , Eucaliptol , Inflamação/tratamento farmacológico , Interleucina-6 , Extratos Vegetais/química , Terpenos/farmacologia , Fator de Necrose Tumoral alfa
19.
Mol Med ; 27(1): 95, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470609

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs), a type of pervasive genes that regulates various biological processes, are differentially expressed in different types of malignant tumors. The role of lncRNAs in the carcinogenesis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, we investigated the role of the lncRNA DKFZp434J0226 in PDAC. METHODS: Aberrantly expressed mRNAs and lncRNAs among six PDAC and paired non-tumorous tissues were profiled using microarray analysis. Quantitative real-time polymerase chain reaction was used to evaluate DKFZp434J0226 expression in PDAC tissues. CCK-8 assay, wound-healing assay, soft agar colony formation assay, and transwell assay were performed to assess the invasiveness and proliferation of PDAC cells. Furthermore, RNA pull-down, immunofluorescence, RNA immunoprecipitation, and western blotting assays were performed to investigate the association between DKFZp434J0226 and SF3B6. Tumor xenografts in mice were used to test for tumor formation in vivo. RESULTS: In our study, 222 mRNAs and 128 lncRNAs were aberrantly expressed (≥ twofold change). Of these, 66 mRNAs and 53 lncRNAs were upregulated, while 75 lncRNAs and 156 mRNAs were downregulated. KEGG pathway analysis and the Gene ontology category indicated that these genes were associated with the regulation of mRNA alternative splicing and metabolic balance. Clinical analyses revealed that overexpression of DKFZp434J0226 was associated with worse tumor grading, frequent perineural invasion, advanced tumor-node-metastasis stage, and decreased overall survival and time to progression. Functional assays demonstrated that DKFZp434J0226 promoted PDAC cell migration, invasion, and growth in vitro and accelerated tumor proliferation in vivo. Mechanistically, DKFZp434J0226 interacted with the splicing factor SF3B6 and promoted its phosphorylation, which further regulated the alternative splicing of pre-mRNA. CONCLUSIONS: This study indicates that DKFZp434J0226 regulates alternative splicing through phosphorylation of SF3B6 in PDAC and leads to an oncogenic phenotype in PDAC.


Assuntos
Processamento Alternativo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fosforilação , Prognóstico , Ligação Proteica , Transporte Proteico , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
20.
Acta Pharmacol Sin ; 42(8): 1212-1222, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33154553

RESUMO

Herbs and dietary supplement-induced liver injury (HILI) is the leading cause of drug-induced liver injury in China. Among different hepatotoxic herbs, the pyrrolizidine alkaloid (PA)-producing herb Gynura japonica contributes significantly to HILI by inducing hepatic sinusoidal obstruction syndrome (HSOS), a liver disorder characterized by hepatomegaly, hyperbilirubinemia, and ascites. In China, G. japonica has been used as one of the plant species for Tu-San-Qi and is often misused with non-PA-producing Tu-San-Qi (Sedum aizoon) or even San-Qi (Panax notoginseng) for self-medication. It has been reported that over 50% of HSOS cases are caused by the intake of PA-producing G. japonica. In this review, we provide comprehensive information to distinguish these Tu-San-Qi-related herbal plant species in terms of plant/medicinal part morphologies, medicinal indications, and chemical profiles. Approximately 2156 Tu-San-Qi-associated HSOS cases reported in China from 1980 to 2019 are systematically reviewed in terms of their clinical manifestation, diagnostic workups, therapeutic interventions, and outcomes. In addition, based on the application of our developed mechanism-based biomarker of PA exposure, our clinical findings on the definitive diagnosis of 58 PA-producing Tu-San-Qi-induced HSOS patients are also elaborated. Therefore, this review article provides the first comprehensive report on 2214 PA-producing Tu-San-Qi (G. japonica)-induced HSOS cases in China, and the information presented will improve public awareness of the significant incidence of PA-producing Tu-San-Qi (G. japonica)-induced HSOS and facilitate future prevention and better clinical management of this severe HILI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/intoxicação , Alcaloides de Pirrolizidina/intoxicação , Asteraceae/química , Biomarcadores/sangue , Doença Hepática Crônica Induzida por Substâncias e Drogas/sangue , Doença Hepática Crônica Induzida por Substâncias e Drogas/diagnóstico , China , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Humanos , Panax notoginseng/química , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo , Sedum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA