Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 17(20): e2100394, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33870652

RESUMO

In nature, cells rely on a structural framework called the "cytoskeleton" to maintain their shape and polarity. Based on this, herein a new class of cell-mimicking nanomedicine using bionic skeletons constituted by the oligomeric Au(I)-peptide complex is developed. The peptide function of degrading pathological MDM2 and MDMX is used to synthesize an oligomeric Au(I)-PMIV precursor capable of self-assembling into a clustered spherical bionic skeleton. Through coating by erythrocyte membrane, an erythrocyte-mimicking nano-cell (Nery-PMIV) is developed with depressed macrophage uptakes, increased colloidal stability, and prolonged blood circulation. Nery-PMIV potently restores p53 and p73 in vitro and in vivo by degrading MDM2/MDMX. More importantly, Nery-PMIV effectively augments antitumor immunity elicited by anti-PD1 therapy in a murine orthotopic allograft model for LUAD and a humanized patient-derived xenograft (PDX) mouse model for LUAD, while maintaining a favorable safety profile. Taken together, this work not only presents evidence showing that MDM2/MDMX degradation is a potentially viable therapeutic paradigm to synergize anti-PD1 immunotherapy toward LUAD carrying wild-type p53; it also suggests that cell-mimicking nanoparticles with applicable bionic skeletons hold tremendous promise in offering new therapies to revolutionize nanomedicine in the treatment of a myriad of human diseases.


Assuntos
Adenocarcinoma , Proteínas Proto-Oncogênicas c-mdm2 , Animais , Biomimética , Proteínas de Ciclo Celular , Eritrócitos/metabolismo , Imunoterapia , Camundongos , Peptídeos/metabolismo , Comportamento Predatório , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Esqueleto/metabolismo , Proteína Supressora de Tumor p53/metabolismo
2.
J Biochem Mol Toxicol ; 33(11): e22400, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31593355

RESUMO

Inflammatory bowel disease (IBD) is a continual ailment condition which engrosses the entire alimentary canal. The IBD can be primarily distinguished into two forms, ulcerative colitis, and Crohn's disease. The major symptoms of IBD include pustules or abscesses, severe abdominal pain, diarrhea, fistula, and stenosis, which may directly affect the patient's quality of life. A variety of mediators can stimulate the circumstances of IBD, some examples include infections by microbes such as bacteria, perturbation of the immune system and the surrounding environment of the intestines. Severe colitis was stimulated in the experimental animals through administering 4% dextran sulfate sodium (DSS) which is mixed in water ad libitum for 6 days. Eriocitrin (30 mg/kg) was then administered to the experimental animals followed by the induction of severe colitis to evaluate the therapeutic prospective of eriocitrin against the colon inflammation stimulated by DSS. In this study, eriocitrin (30 mg/kg) demonstrated significant (P < .05) attenuation activity against the DSS-stimulated severe colitis in experimental animals. Eriocitrin counteracted all of the clinical deleterious effects induced by DSS, such as body-weight loss, colon shortening, histopathological injury, accretion of infiltrated inflammatory cells at the inflamed region and the secretion of inflammatory cytokines. The results clearly showed that eriocitrin effectively attenuated DSS-induced acute colitis in experimental animals.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/farmacologia , Flavanonas/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/administração & dosagem , Citrus/química , Colo/efeitos dos fármacos , Colo/patologia , Ciclo-Oxigenase 2/análise , Citocinas/metabolismo , Modelos Animais de Doenças , Flavanonas/administração & dosagem , Inflamação/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/análise , Peroxidase/metabolismo , Extratos Vegetais/administração & dosagem , Índice de Gravidade de Doença , Redução de Peso/efeitos dos fármacos
3.
Clin Proteomics ; 15: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719494

RESUMO

BACKGROUND: The development of clinically accessible biomarkers is critical for the early diagnosis of gastric cancer (GC) in patients. High-throughput proteomics techniques could not only effectively generate a serum peptide profile but also provide a new approach to identify potentially diagnostic and prognostic biomarkers for cancer patients. METHODS: In this study, we aim to identify potentially discriminating serum biomarkers for GC. In the discovery cohort, we screened potential biomarkers using magnetic-bead-based purification and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in 64 samples from 32 GC patients that were taken both pre- and post-operatively and 30 healthy volunteers that served as controls. In the validation cohort, the expression patterns and diagnostic values of serum FGA, AHSG and APOA-I were further confirmed by ELISA in 42 paired GC patients (pre- and post-operative samples from 16 patients with pathologic stage I/II and 26 with stage III/IV), 30 colorectal cancer patients, 30 hepatocellular carcinoma patients, and 28 healthy volunteers. RESULTS: ClinProTools software was used and annotated 107 peptides, 12 of which were differentially expressed among three groups (P < 0.0001, fold > 1.5). These 12 peptide peaks were further identified as FGA, AHSG, APOA-I, HBB, TXNRD1, GSPT2 and CAKP5. ELISA data suggested that the serum levels of FGA, AHSG and APOA-I in GC patients were significantly different compared with healthy controls and had favorable diagnostic values for GC patients. Moreover, we found that the serum levels of these three proteins were associated with TNM stages and could reflect tumor burden. CONCLUSION: Our findings suggested that FGA, AHSG and APOA-I might be potential serum biomarkers for GC diagnosis.

4.
Int J Mol Sci ; 19(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360760

RESUMO

The maintenance of ordinal cell cycle phases is a critical biological process in cancer genesis, which is a crucial target for anti-cancer drugs. As an important natural isoquinoline alkaloid from Chinese herbal medicine, Berberine (BBR) has been reported to possess anti-cancer potentiality to induce cell cycle arrest in hepatocellular carcinoma cells (HCC). However, the underlying mechanism remains to be elucidated. In our present study, G0/G1 phase cell cycle arrest was observed in berberine-treated Huh-7 and HepG2 cells. Mechanically, we observed that BBR could deactivate the Akt pathway, which consequently suppressed the S-phase kinase-associated protein 2 (Skp2) expression and enhanced the expression and translocation of Forkhead box O3a (FoxO3a) into nucleus. The translocated FoxO3a on one hand could directly promote the transcription of cyclin-dependent kinase inhibitors (CDKIs) p21Cip1 and p27Kip1, on the other hand, it could repress Skp2 expression, both of which lead to up-regulation of p21Cip1 and p27Kip1, causing G0/G1 phase cell cycle arrest in HCC. In conclusion, BBR promotes the expression of CDKIs p21Cip1 and p27Kip1 via regulating the Akt/FoxO3a/Skp2 axis and further induces HCC G0/G1 phase cell cycle arrest. This research uncovered a new mechanism of an anti-cancer effect of BBR.


Assuntos
Berberina/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transporte Proteico , Proteínas Quinases Associadas a Fase S/genética
5.
Arch Toxicol ; 88(1): 97-107, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23835921

RESUMO

Natural flavonoids from plants have been demonstrated to possess promising chemopreventive activities against various diseases. 7-{4-[Bis-(2-hydroxy-ethyl)-amino]-butoxy}-5-hydroxy-8-methoxy-2-phenyl-chromen-4-one (V8), a newly synthesized derivative of wogonin may have antioxidant, antiviral, anti-inflammatory and anti-tumor potentials as wogonin. Based on the recent findings of V8, the anti-tumor activities and fundamental mechanisms by which V8 inhibits growth of hepatocellular carcinoma were further investigated in this study. After the treatment of V8, a significant inhibition of HepG2 cell proliferation was observed in a dose-dependent manner with the IC50 value of 23 µM using MTT assay. The exposure to V8 also resulted in apoptosis induction and an accumulation of ROS and Ca(2+). Meanwhile, a release of cytochrome c (Cyt-c), activation of BH-3 only proteins and Bax, decrease in mitochondrial membrane potential ΔΨ, as well as a suppression of Bcl-2, pro-caspase9 and pro-caspase3 expression were shown. Moreover, knocking down CHOP partly decreased the effect of V8-mediated apoptosis and activation of GRP78, p-PERK, p-eIF2α, ATF4 and CHOP modulated ER stress triggered by V8. In vivo, V8 inhibited the transplanted mice H22 liver carcinomas in a dose-dependent manner. Compared with wogonin, V8 exhibited stronger anti-proliferative effects both in vitro and in vivo. The underlying mechanism of activating PERK-eIF2α-ATF4 pathway by which V8 induces apoptosis was verified once again in vivo. The apoptosis induction via the mitochondrial pathway by modulating the ROS-mediated ER signaling pathway might serve to provide support for further studies of V8 as a possible anticancer drug in the clinical treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Flavonas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Feminino , Flavanonas/química , Flavanonas/farmacologia , Flavonas/síntese química , Células Hep G2/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Transl Oncol ; 26(3): 630-643, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37480430

RESUMO

PURPOSE: Metabolic reprogramming is a novel hallmark and therapeutic target of cancer. Our study aimed to establish fatty acid metabolism-associated scores based on gene signature and investigated its effects on immunotherapy in colon cancer. METHODS: Gene expression and clinical information were collected from Gene Expression Omnibus (GEO) database to identify a gene signature by non-negative matrix factorization (NMF) clustering and Cox regression analysis. Subsequently, we constructed the fatty acid metabolism score (FA-score) model by principal component analysis (PCA) and explored its relativity of prognosis and the response to immunotherapy in colon cancer. Finally, the Cancer Genome Atlas (TCGA) database was introduced and in vitro study was performed for verification. RESULTS: The FA-score-high group had a higher level of fatty acid metabolism and was associated with worse patient overall survival. Significantly, FA-score correlated closely with the biomarkers of immunotherapy, and the FA-score-high group had a poorer therapeutic efficacy of immune checkpoint blockade. In vitro experiments demonstrated that ACSL5 may be a critical metabolic regulatory target. CONCLUSIONS: Our study provided a comprehensive analysis of the heterogeneity of fatty acid metabolism in colon cancer. We highlighted the potential clinical utility of fatty acid metabolism-related genes to be biomarkers of colon cancer prognosis and targets to improve the effect of immunotherapy.


Assuntos
Neoplasias do Colo , Humanos , Prognóstico , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Imunoterapia , Biomarcadores , Ácidos Graxos
7.
Antioxidants (Basel) ; 13(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38397811

RESUMO

Ulcerative colitis is an inflammatory bowel disease with multiple pathogeneses. Here, we aimed to study the therapeutic role of ulinastatin (UTI), an anti-inflammatory bioagent, and its associated mechanisms in treating colitis. Dextran sulfate sodium was administrated to induce colitis in mice, and a subgroup of colitis mice was treated with UTI. The gut barrier defect and inflammatory manifestations of colitis were determined via histological and molecular experiments. In addition, transcriptomics, metagenomics, and metabolomics were employed to explore the possible mechanisms underlying the effects of UTI. We found that UTI significantly alleviated the inflammatory manifestations and intestinal barrier damage in the mice with colitis. Transcriptome sequencing revealed a correlation between the UTI treatment and JAK-STAT signaling pathway. UTI up-regulated the expression of SOCS1, which subsequently inhibited the phosphorylation of JAK2 and STAT3, thus limiting the action of inflammatory mediators. In addition, 16S rRNA sequencing illustrated that UTI maintained a more stable intestinal flora, protecting the gut from dysbiosis in colitis. Moreover, metabolomics analysis demonstrated that UTI indeed facilitated the production of some bile acids and short-chain fatty acids, which supported intestinal homeostasis. Our data provide evidence that UTI is effective in treating colitis and support the potential use of UTI treatment for patients with ulcerative colitis.

8.
J Cancer ; 15(3): 809-824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213725

RESUMO

Background: Colorectal cancer (CRC) is one of the most common malignant tumors and has high morbidity and mortality rates. Previous studies have shown that TSPEAR mutations are involved in the development and progression of gastric cancer and liver cancer. However, the role of TSPEAR in CRC is still unclear. Methods: In The Cancer Genome Atlas (TCGA) database, 590 CRC patients with complete survival information were analyzed. We assessed TSPEAR expression in a pan-cancer dataset from the TCGA database. Cox regression analysis was performed to evaluate factors associated with prognosis. Enrichment analysis via the R package "clusterProfiler" was used to explore the potential function of TSPEAR. The single-sample GSEA (ssGSEA) method from the R package "GSVA" and the TIMER database were used to investigate the association between the immune infiltration level and TSPEAR expression in CRC. The R package "maftools" was used to explore the association between tumour mutation burden (TMB) and TSPEAR expression in CRC. CCK-8 assays and cell invasion assays were used to detect the effect of TSPEAR and TGIF2 on the biological behavior of CRC cells. Results: Pan-cancer analysis revealed that TSPEAR was upregulated in CRC tissues compared to normal tissues and that high TSPEAR expression was associated with poorer overall survival (OS) (p=0.0053). The expression of TSPEAR increased with increasing TNM stage, T stage, N stage, and M stage. The nomogram constructed with TSPEAR, age, and TNM stage showed better predictive value than TSPEAR, age, or TNM stage alone. Immune cell infiltration analysis revealed that high expression of TSPEAR was associated with lower immune cell infiltration. Tumor mutation burden (TMB) analysis indicated that high expression of TSPEAR was associated with lower TMB (p=0.005), and high TMB was associated with shorter OS (p=0.02). CCK-8 assays and cell invasion assays indicated that in vitro knockdown of TSPEAR inhibited the proliferation, migration, and invasion of CRC cells. In addition, TSPEAR expression may be regulated by the upstream transcription factor TGIF2. Conclusion: TSPEAR expression was higher in CRC tissues than in normal tissues. Its upregulation was significantly associated with a poor prognosis. Additionally, TSPEAR plays a significant role in tumor immunity and the biological behavior of CRC cells. Thus, TSPEAR may become a promising prognostic biomarker and therapeutic target for CRC patients.

9.
PeerJ ; 12: e16911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371373

RESUMO

Objective: E2F transcription factors are associated with tumor development, but their underlying mechanisms in gastric cancer (GC) remain unclear. This study explored whether E2Fs determine the prognosis or immune and therapy responses of GC patients. Methods: E2F regulation patterns from The Cancer Genome Atlas (TCGA) were systematically investigated and E2F patterns were correlated with the characteristics of cellular infiltration in the tumor microenvironment (TME). A principal component analysis was used to construct an E2F scoring model based on prognosis-related differential genes to quantify the E2F regulation of a single tumor. This scoring model was then tested in patient cohorts to predict effects of immunotherapy. Results: Based on the expression profiles of E2F transcription factors in GC, two different regulatory patterns of E2F were identified. TME and survival differences emerged between the two clusters. Lower survival rates in the Cluster2 group were attributed to limited immune function due to stromal activation. The E2F scoring model was then constructed based on the E2F-related prognostic genes. Evidence supported the E2F score as an independent and effective prognostic factor and predictor of immunotherapy response. A gene-set analysis correlated E2F score with the characteristics of immune cell infiltration within the TME. The immunotherapy cohort database showed that patients with a higher E2F score demonstrated better survival and immune responses. Conclusions: This study found that differences in GC prognosis might be related to the E2F patterns in the TME. The E2F scoring system developed in this study has practical value as a predictor of survival and treatment response in GC patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Microambiente Tumoral/genética , Imunoterapia , Bases de Dados Factuais , Fatores de Transcrição E2F
10.
Front Oncol ; 13: 1234045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564935

RESUMO

Background: As the most common gastrointestinal malignancy worldwide, liver metastases occur in half colorectal cancer (CRC) patients. Early detection can help treat them early and reduce mortality in patients with colorectal cancer liver metastases (CRLM). Finding useful biomarkers for CRLM is thus essential. Methods: The TCGA and GEO databases were used to download the expression profiles and clinical data of the patients. Differential analysis screened for genes associated with CRLM, and univariate Cox regression analysis identified genes associated with prognosis. The least absolute shrinkage and selection operator (LASSO) method further preferred genes to construct a prognostic signature. Kaplan-Meier survival curves were used to show patients' overall survival (OS). Receiver operating characteristic (ROC) curves showed the accuracy of the model. Risk scores and clinical characteristics of patients were included in multivariate Cox regression analysis to identify independent risk factors, and a nomogram was constructed. The proportion of immune cells and infiltration were assessed using the 'CIBERSORT' package and the 'ESTIMATE' package. Results: We constructed a signature consisting of seven CRLM-associated genes, and signature-based risk scores have great potential in estimating the prognosis of CRC patients. Moreover, the poor response to immunotherapy in high-risk patients might contribute to the poor prognosis of individuals. Furthermore, we found that overexpression of Hepcidin antimicrobial peptide (HAMP), the only gene highly expressed in CRC and liver metastatic tissues, promoted CRC development and that it was associated with tumor mutation burden (TMB), DNA mismatch repair (MMR) genes, and microsatellite instability (MSI) in various tumors. Finally, we found that in CRC patients, low expression of HAMP also represented a better immunotherapeutic outcome, reflecting the critical role of HAMP in guiding immunotherapy. Conclusion: We identified a prognostic signature containing 7 CRLM-associated genes, and the signature was specified as an independent predictor and a nomogram containing the risk score was built accordingly. In addition, the derived gene HAMP could help guide the exploration of profitable immunotherapeutic strategies.

11.
Front Oncol ; 13: 1190229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223685

RESUMO

Background: Given the key role of integrins in maintaining intestinal homeostasis, anti-integrin biologics in inflammatory bowel disease (IBD) are being investigated in full swing. However, the unsatisfactory efficacy and safety of current anti-integrin biologics in clinical trials limit their widespread use in clinic. Therefore, it is particularly important to find a target that is highly and specifically expressed in the intestinal epithelium of patients with IBD. Methods: The function of integrin αvß6 in IBD and colitis-associated carcinoma (CAC) with the underlying mechanisms has been less studied. In the present study, we detected the level of integrin ß6 within inflammation including colitis tissues in human and mouse. To investigate the role of integrin ß6 in IBD and CAC, integrin ß6 deficient mice were hence generated based on the construction of colitis and CAC model. Results: We noted that integrin ß6 was significantly upregulated in inflammatory epithelium of patients with IBD. Integrin ß6 deletion not only reduced infiltration of pro-inflammatory cytokines, but also attenuated disruption of tight junctions between colonic epithelial cells. Meanwhile, lack of integrin ß6 affected macrophage infiltration in mice with colitis. This study further revealed that lack of integrin ß6 could inhibit tumorigenesis and tumor progression in CAC model by influencing macrophage polarization, which was also involved in attenuating the degree of intestinal symptoms and inflammatory responses in mice suffering from colitis. Conclusions: The present research provides a potentially new perspective and option for the treatment of IBD and CAC.

12.
Biochem Cell Biol ; 90(6): 718-30, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23194187

RESUMO

Gambogic acid (GA) is considered a potent anti-tumor agent for its multiple effects on cancer cells in vitro and in vivo. Low concentrations of GA (0.3-1.2 µmol/L) can suppress invasion of human breast carcinoma cells without affecting cell viability. To get a whole profile of the inhibition on breast cancers, higher concentrations of GA and spontaneous metastatic animal models were employed. Treatment with GA (3 and 6 µmol/L) induced apoptosis in MDA-MB-231 cells and the accumulation of reactive oxygen species (ROS). Furthermore, GA induced PARP cleavage, activation of caspase-3, caspase-8, and caspase-9, as well as an increased ratio of Bax/Bcl-2. Moreover, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c (Cyt c) from mitochondria were observed, indicating that GA induced apoptosis through accumulation of ROS and mitochondrial apoptotic pathway. GA also inhibited cell survival via blocking Akt/mTOR signaling. In vivo, GA significantly inhibited the xenograft tumor growth and lung metastases in athymic BALB/c nude mice bearing MDA-MB-231 cells. Collectively, these data provide further support for the multiple effects of GA on human breast cancer cells, as well as for its potential application to inhibit tumor growth and prevent metastasis in human cancers.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/patologia , Xantonas/farmacologia , Animais , Fator de Indução de Apoptose/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Citocromos c/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/metabolismo
13.
Toxicol Appl Pharmacol ; 261(2): 217-26, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22538171

RESUMO

It has been well characterized that flavonoids possess pronounced anticancer potentials including anti-angiogenesis, anti-metastasis, and pro-apoptosis. Herein, we report, for the first time, that VI-14, a novel flavonoid derivative, possesses anti-cancer properties. The purpose of this study is to investigate the anti-migration and anti-invasion activities of VI-14 in breast cancer cells. Our data indicate that VI-14 inhibits adhesion, migration and invasion of MDA-MB-231 and MDA-MB-435 human breast cancer cells. MDA-MB-231 cells treated with VI-14 display reduced activities and expressions of ECM degradation-associated proteins including matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) at both the protein and mRNA levels. Meanwhile, VI-14 treatment induces an up-regulated expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and 2 (TIMP-2) in MDA-MB-231 cells. Western blotting results show that phosphorylation levels of critical components of the MAPK signaling pathway, including ERK, JNK and P38, are dramatically decreased in VI-14-treated MDA-MB-231 cells. Furthermore, treatment of VI-14 significantly decreases the nuclear levels and the binding ability of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). Taken together, our data suggest that VI-14 treatment suppresses migration and motility of breast cancer cells, and VI-14 may be a potential compound for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Flavonoides/farmacologia , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Flavonoides/química , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Invasividade Neoplásica , Inibidor Tecidual de Metaloproteinase-1/análise
14.
Cells ; 11(13)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805163

RESUMO

Integrin ß3 plays a key role in the resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI), but the development of integrin ß3 inhibitors has been stalled due to the failure of phase III clinical trials for cancer treatment. Therefore, it is imperative to find a potentially effective solution to the problem of acquired resistance to EGFR-TKI for patients with integrin-ß3 positive non-small-cell lung cancer (NSCLC) by exploring novel downstream targets and action mechanisms of integrin ß3. In the present study, we observed that the expression of integrin ß3 and AXL was significantly upregulated in erlotinib-resistant NSCLC cell lines, which was further confirmed clinically in tumor specimens from patients with NSCLC who developed acquired resistance to erlotinib. Through ectopic expression or knockdown, we found that AXL expression was positively regulated by integrin ß3. In addition, integrin ß3 promoted erlotinib resistance in NSCLC cells by upregulating AXL expression. Furthermore, the YAP pathway, rather than pathways associated with ERK or AKT, was involved in the regulation of AXL by integrin ß3. To investigate the clinical significance of this finding, the current well-known AXL inhibitor R428 was tested, demonstrating that R428 significantly inhibited resistance to erlotinib, colony formation, epithelial-mesenchymal transformation and cell migration induced by integrin ß3. In conclusion, integrin ß3 could promote resistance to EGFR-TKI in NSCLC by upregulating the expression of AXL through the YAP pathway. Patients with advanced NSCLC, who are positive for integrin ß3, might benefit from a combination of AXL inhibitors and EGFR-TKI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Humanos , Integrina beta3/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
Cardiovasc Toxicol ; 22(4): 311-325, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35211833

RESUMO

Hypertension is one of the most prevalent cardiovascular disorders worldwide, affecting 1.13 billion people, or 14% of the global population. Hypertension is the single biggest risk factor for cerebrovascular dysfunction. According to the American Heart Association, high blood pressure (BP), especially in middle-aged individuals (~ 40 to 60 years old), is associated with an increased risk of dementia, later in life. Alzheimer's disease and cerebrovascular disease are the two leading causes of dementia, accounting for around 80% of the total cases and usually combining mixed pathologies from both. Little is known regarding how hypertension affects cognitive function, so the impact of its treatment on cognitive impairment has been difficult to assess. The brain renin-angiotensin system (RAS) is essential for BP regulation and overactivity of this system has been established to precede the development and maintenance of hypertension. Angiotensin II (Ang-II), the main peptide within this system, induces vasoconstriction and impairs neuro-vascular coupling by acting on brain Ang-II type 1 receptors (AT1R). In this review, we systemically analyzed the association between RAS and biological mechanisms of cognitive impairment, from the perspective of AT1R located in the central nervous system. Additionally, the possible contribution of brain AT1R to global cognition decline in COVID-19 cases will be discussed as well.


Assuntos
COVID-19 , Disfunção Cognitiva , Hipertensão , Adulto , Angiotensina II/metabolismo , Pressão Sanguínea/fisiologia , COVID-19/complicações , Disfunção Cognitiva/diagnóstico , Humanos , Hipertensão/diagnóstico , Pessoa de Meia-Idade , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina
17.
Int J Biol Sci ; 18(10): 3944-3960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844799

RESUMO

Our understanding of coding gene functions in lung cancer leads to the development of multiple generations of targeted drugs. Noncoding RNAs, including circular RNAs (circRNAs), have been demonstrated to play a vital role in tumorigenesis. Uncovering the functions of circRNAs in tumorigenesis and their underlying regulatory mechanisms may shed new light on the development of novel diagnostic and therapeutic strategies for human cancer. Here we report the important role of circFAT1 in lung adenocarcinoma (LUAD) progression and the potential impact of circFAT1 on LUAD treatment. We found that circFAT1 was one of the top expressed circRNAs in A549 cells by circRNA-seq and was significantly upregulated in human LUAD tissues. Multiple cellular assays with A549 and PC9 LAUD cell lines under both gain-of-function and loss-of-function conditions demonstrated that circFAT1 promoted proliferation of LUAD cells in vitro and in vivo. At molecular level, circFAT1 sequestered miR-7 to upregulate IRS2, which in turn regulated downstream ERK1/2 phosphorylation and CCND1 expression, ultimately promoting tumor progression. In addition, we showed that DDP treatment was much more effective in circFAT1 knockdown tumor cells in vitro and in a xenograft tumor model. Our results indicate that circFAT1 promote tumorigenesis in LUAD through sequestering miR-7, consequently upregulating IRS2-ERK1/2-mediated CCND1 expression, and can be a valuable therapeutic target and an important parameter for precision treatment in LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Adenocarcinoma de Pulmão/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética
18.
Dalton Trans ; 51(24): 9218-9222, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670316

RESUMO

A C,S bonded quasi-two-coordinate Cr(II) complex, Cr(SAr*)2 (HSAr* = HSC6H3-2,6(C6H2-2,4,6-Pri3)2), has been synthesized according to literature precedent. Magnetic measurements, high-frequency/field electron paramagnetic resonance (HF-EPR) experiments and ab initio calculation studies show that the field-induced slow magnetic relaxation behaviour is caused by relatively weak axial magnetic anisotropy.

19.
Transl Cancer Res ; 10(6): 2790-2800, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35116589

RESUMO

BACKGROUND: A growing number of evidence has revealed the vital role of autophagy in pathological processes of cancer, including gastric cancer (GC). However, many previous studies only focused on exploring single pathway or limited genes of interest in GC, which only reflected partial functions of autophagy. The present study aimed to construct an autophagy-related risk signature for GC. METHODS: Differentially expressed autophagy-related genes (ARGs) in GC and non-tumor samples were screened through The Cancer Genome Atlas (TCGA) database, followed by bioinformatics analysis using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) platforms. Prognosis-related ARGs were generated by univariate and multivariate Cox regression test. RESULTS: A total of seven prognosis-related ARGs (HSPB8, NRG2, GABARAPL1, TMEM74, DLC1, MAP1LC3C and NRG3) were determined to establish a prognostic index (PI) model, which was demonstrated to be an independent prognostic indicator for patients with GC. More importantly, it was successfully validated in an external cohort of patients from the GSE15460 dataset, indicating the useful reproducibility of this signature. In addition, the PI model was associated with immune cell infiltration estimates in GC. CONCLUSIONS: Taken together, the present study suggested that the seven ARGs-related signature could serve as an independent prognostic indicator for patients with GC.

20.
Oxid Med Cell Longev ; 2020: 8032187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32855767

RESUMO

The metastatic potential of colorectal cancer (CRC) is intensively promoted by the tumor microenvironment (TME) in a paracrine manner. As a pleiotropic inflammatory cytokine, Interleukin-6 (IL-6) is produced and involved in CRC, the same scenario where integrin αvß6 also becomes upregulated. However, the relationship between IL-6 and integrin αvß6 as well as their involvement in the crosstalk between CRC and TME remains largely unclear. In the present study, we demonstrated a positive correlation between the expression of IL-6 and integrin ß6 in CRC samples. The mutually promotive interaction between CRC and TME was further determined by an indirect coculture system. CRC cells could augment the secretion of IL-6 from fibroblasts, which in return induced invasion and integrin ß6 expression of CRC cells. Through the classic IL-6 receptor/STAT-3 signaling pathway, IL-6 mediated the upregulation of integrin ß6, which was involved in the invasion and epithelial-mesenchymal transition of CRC cells induced by IL-6. Taken together, our results reveal a paracrine crosstalk between IL-6 signals originating from the TME and increased the integrin ß6 level of CRC. IL-6 induces CRC invasion via upregulation of integrin ß6 through the IL-6 receptor/STAT-3 signaling pathway. Combined inhibition of IL-6 along with integrin ß6-targeted strategy may indicate new directions for antitumor strategies for CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Cadeias beta de Integrinas/genética , Interleucina-6/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA