Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Biol Chem ; : 107466, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876302

RESUMO

Glycosaminoglycan (GAG) lyases are often strictly substrate specific, and it is especially difficult to simultaneously degrade GAGs with different types of glycosidic bonds. Herein, we found a new class of GAG lyases (GAGases) from different bacteria. These GAGases belong to polysaccharide lyase 35 family and share quite low homology with the identified GAG lyases. The most surprising thing is that GAGases can not only degrade three types of GAGs: HA, CS and HS, but even one of them can also degrade alginate. Further investigation of structural preferences revealed that GAGases selectively act on GAG domains composed of non/6-O-/N-sulfated hexosamines and d-glucoronic acids, as well as on alginate domains composed of d-mannuronic acids. Additionally, GAG lyases were once speculated to have evolved from alginate lyases, but no transitional enzymes have been found. The discovery of GAGases not only broadens the category of GAG lyases, provides new enzymatic tools for the structural and functional studies of GAGs with specific structures, but also provides candidates for the evolution of GAG lyases.

2.
J Biol Chem ; 299(5): 104692, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031818

RESUMO

Chondroitinase ABC-type I (CSase ABC I), which can digest both chondroitin sulfate (CS) and dermatan sulfate (DS) in an endolytic manner, is an essential tool in structural and functional studies of CS/DS. Although a few CSase ABC I have been identified from bacteria, the substrate-degrading pattern and regulatory mechanisms of them have rarely been investigated. Herein, two CSase ABC I, IM3796 and IM1634, were identified from the intestinal metagenome of CS-fed mice. They show high sequence homology (query coverage: 88.00%, percent identity: 90.10%) except for an extra peptide (Met1-His109) at the N-terminus in IM1634, but their enzymatic properties are very different. IM3796 prefers to degrade 6-O-sulfated GalNAc residue-enriched CS into tetra- and disaccharides. In contrast, IM1634 exhibits nearly a thousand times more activity than IM3796 and can completely digest CS/DS with various sulfation patterns to produce disaccharides, unlike most CSase ABC I. Structure modeling showed that IM3796 did not contain an N-terminal domain composed of two ß-sheets, which is found in IM1634 and other CSase ABC I. Furthermore, deletion of the N-terminal domain (Met1-His109) from IM1634 caused the enzymatic properties of the variant IM1634-T109 to be similar to those of IM3796, and conversely, grafting this domain to IM3796 increased the similarity of the variant IM3796-A109 to IM1634. In conclusion, the comparative study of the new CSase ABC I provides two unique tools for CS/DS-related studies and applications and, more importantly, reveals the critical role of the N-terminal domain in regulating the substrate binding and degradation of these enzymes.


Assuntos
Condroitina ABC Liase , Sulfatos de Condroitina , Animais , Camundongos , Bactérias/enzimologia , Condroitina ABC Liase/química , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/química , Dissacarídeos/química , Peptídeos , Especificidade por Substrato
3.
J Biol Chem ; 298(12): 102609, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265583

RESUMO

The high heterogeneity and mutation rate of cancer cells often lead to the failure of targeted therapy, and therefore, new targets for multitarget therapy of tumors are urgently needed. Aberrantly expressed glycosaminoglycans (GAGs) have been shown to be involved in tumorigenesis and are promising new targets. Recently, the GAG-binding domain rVAR2 of the Plasmodium falciparum VAR2CSA protein was identified as a probe targeting cancer-associated chondroitin sulfate A-like epitopes. In this study, we found that rVAR2 could also bind to heparin (Hep) and chondroitin sulfate E. Therefore, we used rVAR2 as a model to establish a method based on random mutagenesis of the GAG-binding protein and phage display to identify and optimize probes targeting tumor GAGs. We identified a new probe, VAR2HP, which selectively recognized Hep by interacting with unique epitopes consisting of a decasaccharide structure that contains at least three HexA2S(1-4)GlcNS6S disaccharides. Moreover, we found that these Hep-like epitopes were overexpressed in various cancer cells. Most importantly, our in vivo experiments showed that VAR2HP had good biocompatibility and preferentially localizes to tumors, which indicates that VAR2HP has great application potential in tumor diagnosis and targeted therapy. In conclusion, this study provides a strategy for the discovery of novel tumor-associated GAG epitopes and their specific probes.


Assuntos
Heparina , Neoplasias , Humanos , Heparina/metabolismo , Epitopos/química , Glicosaminoglicanos/metabolismo , Sulfatos de Condroitina/genética , Sulfatos de Condroitina/metabolismo , Neoplasias/genética
4.
J Biol Chem ; 296: 100081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33199371

RESUMO

Monomethylamine (MMA) is an important climate-active oceanic trace gas and ubiquitous in the oceans. γ-Glutamylmethylamide synthetase (GmaS) catalyzes the conversion of MMA to γ-glutamylmethylamide, the first step in MMA metabolism in many marine bacteria. The gmaS gene occurs in ∼23% of microbial genomes in the surface ocean and is a validated biomarker to detect MMA-utilizing bacteria. However, the catalytic mechanism of GmaS has not been studied because of the lack of structural information. Here, the GmaS from Rhodovulum sp. 12E13 (RhGmaS) was characterized, and the crystal structures of apo-RhGmaS and RhGmaS with different ligands in five states were solved. Based on structural and biochemical analyses, the catalytic mechanism of RhGmaS was explained. ATP is first bound in RhGmaS, leading to a conformational change of a flexible loop (Lys287-Ile305), which is essential for the subsequent binding of glutamate. During the catalysis of RhGmaS, the residue Arg312 participates in polarizing the γ-phosphate of ATP and in stabilizing the γ-glutamyl phosphate intermediate; Asp177 is responsible for the deprotonation of MMA, assisting the attack of MMA on γ-glutamyl phosphate to produce a tetrahedral intermediate; and Glu186 acts as a catalytic base to abstract a proton from the tetrahedral intermediate to finally generate glutamylmethylamide. Sequence analysis suggested that the catalytic mechanism of RhGmaS proposed in this study has universal significance in bacteria containing GmaS. Our results provide novel insights into MMA metabolism, contributing to a better understanding of MMA catabolism in global carbon and nitrogen cycles.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Glutamatos/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Magnésio/metabolismo , Metilaminas/metabolismo , Microscopia Eletrônica , Rhodovulum/metabolismo
5.
Biochem J ; 478(2): 281-298, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33351063

RESUMO

Recently, a novel CS/DS 4-O-endosulfatase was identified from a marine bacterium and its catalytic mechanism was investigated further (Wang, W., et. al (2015) J. Biol. Chem.290, 7823-7832; Wang, S., et. al (2019) Front. Microbiol.10, 1309). In the study herein, we provide new insight about the structural characteristics of the substrate which determine the activity of this enzyme. The substrate specificities of the 4-O-endosulfatase were probed by using libraries of structure-defined CS/DS oligosaccharides issued from synthetic and enzymatic sources. We found that this 4-O-endosulfatase effectively remove the 4-O-sulfate of disaccharide sequences GlcUAß1-3GalNAc(4S) or GlcUAß1-3GalNAc(4S,6S) in all tested hexasaccharides. The sulfated GalNac residue is resistant to the enzyme when adjacent uronic residues are sulfated as shown by the lack of enzymatic desulfation of GlcUAß1-3GalNAc(4S) connected to a disaccharide GlcUA(2S)ß1-3GalNAc(6S) in an octasaccharide. The 3-O-sulfation of GlcUA was also shown to hinder the action of this enzyme. The 4-O-endosulfatase exhibited an oriented action from the reducing to the non-reducing whatever the saturation or not of the non-reducing end. Finally, the activity of the 4-O-endosulfatase decreases with the increase in substrate size. With the deeper understanding of this novel 4-O-endosulfatase, such chondroitin sulfate (CS)/dermatan sulfate (DS) sulfatase is a useful tool for exploring the structure-function relationship of CS/DS.


Assuntos
Sulfatases/química , Sulfatases/metabolismo , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Dissacarídeos/análise , Dissacarídeos/química , Espectrometria de Massas , Especificidade por Substrato
6.
Mar Drugs ; 19(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34940705

RESUMO

Recent explorations of tool-like alginate lyases have been focused on their oligosaccharide-yielding properties and corresponding mechanisms, whereas most were reported as endo-type with α-L-guluronate (G) preference. Less is known about the ß-D-mannuronate (M) preference, whose commercial production and enzyme application is limited. In this study, we elucidated Aly6 of Flammeovirga sp. strain MY04 as a novel M-preferred exolytic bifunctional lyase and compared it with AlgLs of Pseudomonas aeruginosa (Pae-AlgL) and Azotobacter vinelandii (Avi-AlgL), two typical M-specific endolytic lyases. This study demonstrated that the AlgL and heparinase_II_III modules play indispensable roles in determining the characteristics of the recombinant exo-type enzyme rAly6, which is preferred to degrade M-enriched substrates by continuously cleaving various monosaccharide units from the nonreducing end, thus yielding various size-defined ΔG-terminated oligosaccharides as intermediate products. By contrast, the endolytic enzymes Pae-rAlgL and Avi-rAlgL varied their action modes specifically against M-enriched substrates and finally degraded associated substrate chains into various size-defined oligosaccharides with a succession rule, changing from ΔM to ΔG-terminus when the product size increased. Furthermore, site-directed mutations and further protein structure tests indicated that H195NHSTW is an active, half-conserved, and essential enzyme motif. This study provided new insights into M-preferring lyases for novel resource discoveries, oligosaccharide preparations, and sequence determinations.


Assuntos
Bacteroidetes , Polissacarídeo-Liases/química , Pseudomonas aeruginosa/enzimologia , Animais , Organismos Aquáticos , Especificidade por Substrato
7.
J Biol Chem ; 293(12): 4230-4243, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29414785

RESUMO

GlcUAß1-3GalNAc(4S,6S) (E unit)-rich domains have been shown to play key roles in various biological functions of chondroitin sulfate (CS). However, an enzyme that can specifically isolate such domains through the selective digestion of other domains in polysaccharides has not yet been reported. Here, we identified a glycosaminoglycan lyase from a marine bacterium Vibrio sp. FC509. This enzyme efficiently degraded hyaluronic acid (HA) and CS variants, but not E unit-rich CS-E, into unsaturated disaccharides; therefore, we designated this enzyme a CS-E-resisted HA/CS lyase (HCLase Er). We isolated a series of resistant oligosaccharides from the final product of a low-sulfated CS-E exhaustively digested by HCLase Er and found that the E units were dramatically accumulate in these resistant oligosaccharides. By determining the structures of several resistant tetrasaccharides, we observed that all of them possessed a Δ4,5HexUAα1-3GalNAc(4S,6S) at their non-reducing ends, indicating that the disulfation of GalNAc abrogates HCLase Er activity on the ß1-4 linkage between the E unit and the following disaccharide. Δ4,5HexUAα1-3GalNAc(4S,6S)ß1-4GlcUAß1-3GalNAc(4S,6S) was most strongly resistant to HCLase Er. To our knowledge, this study is the first reporting a glycosaminoglycan lyase specifically inhibited by both 4-O- and 6-O-sulfation of GalNAc. Site-directed and truncation mutagenesis experiments indicated that HCLase Er may use a general acid-base catalysis mechanism and that an extra domain (Gly739-Gln796) is critical for its activity. This enzyme will be a useful tool for structural analyses and for preparing bioactive oligosaccharides of HA and CS variants, particularly from E unit-rich CS chains.


Assuntos
Acetilgalactosamina/metabolismo , Proteínas de Bactérias/metabolismo , Condroitina Liases/metabolismo , Sulfatos de Condroitina/metabolismo , Glucuronatos/metabolismo , Ácido Hialurônico/metabolismo , Vibrio/enzimologia , Sequência de Aminoácidos , Animais , Homologia de Sequência
8.
Biochem J ; 474(22): 3831-3848, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-28963345

RESUMO

Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications.


Assuntos
Organismos Aquáticos/enzimologia , Bactérias/enzimologia , Proteínas de Bactérias/química , Carbono-Oxigênio Liases/química , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Ácido Hialurônico/química , Oligossacarídeos/química , Configuração de Carboidratos
9.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939598

RESUMO

Bifunctional alginate lyases can efficiently degrade alginate comprised of mannuronate (M) and guluronate (G), but their substrate-degrading modes have not been thoroughly elucidated to date. In this study, we present Aly1 as a novel bifunctional endolytic alginate lyase of the genus Flammeovirga The recombinant enzyme showed optimal activity at 50°C and pH 6.0. The enzyme produced unsaturated disaccharide (UDP2) and trisaccharide fractions as the final main alginate digests. Primary substrate preference tests and further structure identification of various size-defined final oligosaccharide products demonstrated that Aly1 is a bifunctional alginate lyase and prefers G to M. Tetrasaccharide-size fractions are the smallest substrates, and M, G, and UDP2 fractions are the minimal product types. Remarkably, Aly1 can vary its substrate-degrading modes in accordance with the terminus types, molecular sizes, and M/G contents of alginate substrates, producing a series of small size-defined saturated oligosaccharide products from the nonreducing ends of single or different saturated sugar chains and yielding unsaturated products in distinct but restricted patterns. The action mode changes can be partially inhibited by fluorescent labeling at the reducing ends of oligosaccharide substrates. Deletion of the noncatalytic region (NCR) of Aly1 caused weak changes of biochemical characteristics but increased the degradation proportions of small size-defined saturated M-enriched oligosaccharide substrates and unsaturated tetrasaccharide fractions without any size changes of degradable oligosaccharides, thereby enhancing the M preference and enzyme activity. Therefore, our results provided insight into the variable action mode of a novel bifunctional endolytic alginate lyase to inform accurate enzyme use.IMPORTANCE The elucidated endolytic alginate lyases usually degrade substrates into various size-defined unsaturated oligosaccharide products (≥UDP2), and exolytic enzymes yield primarily unsaturated monosaccharide products. However, it is poorly understood whether endolytic enzymes can produce monosaccharide product types when degrading alginate. In this study, we demonstrated that Aly1, a bifunctional alginate lyase of Flammeovirga sp. strain MY04, is endolytic and monosaccharide producing. Using various sugar chains as testing substrates, we also proved that key factors causing Aly1's action mode changes are the terminus types, molecular sizes, and M/G contents of substrates. Furthermore, the NCR fragment's effects on Aly1's biochemical characteristics and alginate-degrading modes and corresponding mechanisms were discovered by gene truncation and enzyme comparison. In summary, this study provides a novel bifunctional endolytic tool and a variable action mode for accurate use in alginate degradation.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteroidetes/enzimologia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Proteínas de Bactérias/genética , Bacteroidetes/genética , Bacteroidetes/metabolismo , Dissacarídeos/metabolismo , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/genética , Especificidade por Substrato
10.
Adv Exp Med Biol ; 925: 75-87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27677277

RESUMO

Glycosaminoglycans (GAGs) are important constituents of the extracellular matrix that make significant contributions to biological processes and have been implicated in a wide variety of diseases. GAG-degrading enzymes with different activities have been found in various animals and microorganisms, and they play an irreplaceable role in the structure and function studies of GAGs. As two kind of important GAG-degrading enzymes, hyaluronidase (HAase) and chondroitinase (CSase) have been widely studied and increasing evidence has shown that, in most cases, their substrate specificities overlap and thus the "HAase" or "CSase" terms may be improper or even misnomers. Different from previous reviews, this article combines HAase and CSase together to discuss the traditional classification, substrate specificity, degradation pattern, new resources and naming of these enzymes.


Assuntos
Condroitinases e Condroitina Liases/química , Células Eucarióticas/química , Matriz Extracelular/química , Glicosaminoglicanos/metabolismo , Hialuronoglucosaminidase/química , Animais , Bactérias/química , Bactérias/enzimologia , Configuração de Carboidratos , Sequência de Carboidratos , Condroitinases e Condroitina Liases/classificação , Condroitinases e Condroitina Liases/isolamento & purificação , Condroitinases e Condroitina Liases/metabolismo , Células Eucarióticas/citologia , Glicosaminoglicanos/química , Humanos , Hialuronoglucosaminidase/classificação , Hialuronoglucosaminidase/isolamento & purificação , Hialuronoglucosaminidase/metabolismo , Hidrólise , Cinética , Especificidade por Substrato , Vírus/química , Vírus/enzimologia
11.
J Biol Chem ; 290(12): 7823-32, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25648894

RESUMO

Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications.


Assuntos
Bactérias/enzimologia , Sulfatos de Condroitina/metabolismo , Condroitinases e Condroitina Liases/metabolismo , Biologia Marinha , Condroitinases e Condroitina Liases/genética , Eletroforese em Gel de Poliacrilamida
12.
Appl Environ Microbiol ; 82(1): 364-74, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519393

RESUMO

Alginate lyases are important tools for oligosaccharide preparation, medical treatment, and energy bioconversion. Numerous alginate lyases have been elucidated. However, relatively little is known about their substrate degradation patterns and product-yielding properties, which is a limit to wider enzymatic applications and further enzyme improvements. Herein, we report the characterization and module truncation of Aly5, the first alginate lyase obtained from the polysaccharide-degrading bacterium Flammeovirga. Aly5 is a 566-amino-acid protein and belongs to a novel branch of the polysaccharide lyase 7 (PL7) superfamily. The protein rAly5 is an endolytic enzyme of alginate and associated oligosaccharides. It prefers guluronate (G) to mannuronate (M). Its smallest substrate is an unsaturated pentasaccharide, and its minimum product is an unsaturated disaccharide. The final alginate digests contain unsaturated oligosaccharides that generally range from disaccharides to heptasaccharides, with the tetrasaccharide fraction constituting the highest mass concentration. The disaccharide products are identified as ΔG units. While interestingly, the tri- and tetrasaccharide fractions each contain higher proportions of ΔG to ΔM ends, the larger final products contain only ΔM ends, which constitute a novel oligosaccharide-yielding property of guluronate lyases. The deletion of the noncatalytic region of Aly5 does not alter its M/G preference but significantly decreases the enzymatic activity and enzyme stability. Notably, the truncated protein accumulates large final oligosaccharide products but yields fewer small final products than Aly5, which are codetermined by its M/G preference to and size enlargement of degradable oligosaccharides. This study provides novel enzymatic properties and catalytic mechanisms of a guluronate lyase for potential uses and improvements.


Assuntos
Alginatos/metabolismo , Bacteroidetes/enzimologia , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Sequência de Aminoácidos , Bacteroidetes/metabolismo , Biocatálise , Metabolismo dos Carboidratos , Clonagem Molecular , Dissacarídeos/metabolismo , Eletroforese em Gel de Poliacrilamida , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Cinética , Polissacarídeo-Liases/química , Especificidade por Substrato
13.
Appl Environ Microbiol ; 82(16): 4944-54, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27260364

RESUMO

UNLABELLED: Exo-type agarases release disaccharide units (3,6-anhydro-l-galactopyranose-α-1,3-d-galactose) from the agarose chain and, in combination with endo-type agarases, play important roles in the processive degradation of agarose. Several exo-agarases have been identified. However, their substrate-degrading patterns and corresponding mechanisms are still unclear because of a lack of proper technologies for sugar chain analysis. Herein, we report the novel properties of AgaO, a disaccharide-producing agarase identified from the genus Flammeovirga AgaO is a 705-amino-acid protein that is unique to strain MY04. It shares sequence identities of less than 40% with reported GH50 ß-agarases. Recombinant AgaO (rAgaO) yields disaccharides as the sole final product when degrading agarose and associated oligosaccharides. Its smallest substrate is a neoagarotetraose, and its disaccharide/agarose conversion ratio is 0.5. Using fluorescence labeling and two-stage mass spectrometry analysis, we demonstrate that the disaccharide products are neoagarobiose products instead of agarobiose products, as verified by (13)C nuclear magnetic resonance spectrum analysis. Therefore, we provide a useful oligosaccharide sequencing method to determine the patterns of enzyme cleavage of glycosidic bonds. Moreover, AgaO produces neoagarobiose products by gradually cleaving the units from the nonreducing end of fluorescently labeled sugar chains, and so our method represents a novel biochemical visualization of the exolytic pattern of an agarase. Various truncated AgaO proteins lost their disaccharide-producing capabilities, indicating a strict structure-function relationship for the whole enzyme. This study provides insights into the novel catalytic mechanism and enzymatic properties of an exo-type ß-agarase for the benefit of potential future applications. IMPORTANCE: Exo-type agarases can degrade agarose to yield disaccharides almost exclusively, and therefore, they are important tools for disaccharide preparation. However, their enzymatic mechanisms and agarose degradation patterns are still unclear due to the lack of proper technologies for sugar chain analysis. In this study, AgaO was identified as an exo-type agarase of agarose-degrading Flammeovirga bacteria, representing a novel branch of glycoside hydrolase family 50. Using fluorescence labeling, high-performance liquid chromatography, and mass spectrum analysis technologies, we provide a useful oligosaccharide sequencing method to determine the patterns of enzyme cleavage of glycosidic bonds. We also demonstrate that AgaO produces neoagarobiose by gradually cleaving disaccharides from the nonreducing end of fluorescently labeled sugars. This study will benefit future enzyme applications and oligosaccharide studies.


Assuntos
Proteínas de Bactérias/genética , Bacteroidetes/genética , Bacteroidetes/metabolismo , Dissacarídeos/metabolismo , Glicosídeo Hidrolases/genética , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Filogenia , Análise de Sequência de DNA
14.
Glycoconj J ; 33(6): 841-851, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27526113

RESUMO

Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Sulfatases/química , Animais , Proteínas de Bactérias/metabolismo , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/metabolismo , Humanos , Relação Estrutura-Atividade , Sulfatases/metabolismo
15.
J Biol Chem ; 289(40): 27886-98, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25122756

RESUMO

Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ(4,5)HexUAα1-3GalNAc(6-O-sulfate)ß1-4GlcUA(2-O-sulfate)ß1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications.


Assuntos
Proteínas de Bactérias/metabolismo , Condroitina Liases/metabolismo , Condroitina/metabolismo , Ácido Hialurônico/metabolismo , Água do Mar/microbiologia , Vibrio/enzimologia , Vibrio/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Condroitina/química , Condroitina Liases/química , Condroitina Liases/genética , Estabilidade Enzimática , Ácido Hialurônico/química , Dados de Sequência Molecular , Filogenia , Especificidade por Substrato , Vibrio/química , Vibrio/genética
16.
Anal Chem ; 87(18): 9302-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26287436

RESUMO

Glycosaminoglycans (GAGs) are linear acidic heteropolysaccharides that are ubiquitously expressed in animal tissues and participate in various life processes. To date, the detection and visualization of GAGs in complex biological samples and living organisms remain a challenge because of the lack of powerful biocompatible probes. In this study, a superpositively charged green fluorescent protein (ScGFP) was shown great potential in GAG detection for the first time. First, on the basis of the phenomenon of GAGs dose-dependently inhibiting the fluorescence quenching of ScGFP by graphene oxide, a simple and highly sensitive signal-on homogeneous platform was established for detecting and quantifying GAGs, even in complex samples such as heparin in citrated plasma and oversulfated chondroitin sulfate in heparin. Furthermore, ScGFP with excellent stability and biocompatibility could be easily used as a highly sensitive and selective probe to visualize different types of GAGs in vitro and in vivo through combination with specific GAG-degrading enzymes. This study introduces a versatile probe for GAG detection, which is easy to prepare and which shows a high practical value in basic research and medical applications.


Assuntos
Glicosaminoglicanos/análise , Proteínas de Fluorescência Verde/química , Sondas Moleculares/química , Animais , Configuração de Carboidratos , Bovinos , Linhagem Celular , Sobrevivência Celular , Ácido Cítrico/química , Glicosaminoglicanos/sangue , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Modelos Moleculares , Sondas Moleculares/metabolismo
17.
J Biol Chem ; 288(13): 9519-31, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23378534

RESUMO

Agarase hydrolyzes agarose into a series of oligosaccharides with repeating disaccharide units. The glycoside hydrolase (GH) module of agarase is known to be responsible for its catalytic activity. However, variations in the composition of the GH module and its effects on enzymatic functions have been minimally elucidated. The agaG4 gene, cloned from the genome of the agarolytic Flammeovirga strain MY04, encodes a 503-amino acid protein, AgaG4. Compared with elucidated agarases, AgaG4 contains an extra peptide (Asn(246)-Gly(302)) within its GH module. Heterologously expressed AgaG4 (recombinant AgaG4; rAgaG4) was determined to be an endo-type ß-agarase. The protein degraded agarose into neoagarotetraose and neoagarohexaose at a final molar ratio of 1.5:1. Neoagarooctaose was the smallest substrate for rAgaG4, whereas neoagarotetraose was the minimal degradation product. Removing the extra fragment from the GH module led to the inability of the mutant (rAgaG4-T57) to degrade neoagarooctaose, and the final degradation products of agarose by the truncated protein were neoagarotetraose, neoagarohexaose, and neoagarooctaose at a final molar ratio of 2.7:2.8:1. The optimal temperature for agarose degradation also decreased to 40 °C for this mutant. Bioinformatic analysis suggested that tyrosine 276 within the extra fragment was a candidate active site residue for the enzymatic activity. Site-swapping experiments of Tyr(276) to 19 various other amino acids demonstrated that the characteristics of this residue were crucial for the AgaG4 degradation of agarose and the cleavage pattern of substrate.


Assuntos
Glicosídeo Hidrolases/química , Peptídeos/química , Sefarose/química , Sequência de Aminoácidos , Bactérias/genética , Catálise , Domínio Catalítico , Clonagem Molecular , Biologia Computacional/métodos , Primers do DNA/genética , Vetores Genéticos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Oligossacarídeos/química , Filogenia , Ligação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
18.
Carbohydr Polym ; 330: 121834, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368111

RESUMO

Endothelial dysfunction induced by oxidative stress is an early predictor of atherosclerosis, which can cause various cardiovascular diseases. The glycocalyx layer on the endothelial cell surface acts as a barrier to maintain endothelial biological function, and it can be impaired by oxidative stress. However, the mechanism of glycocalyx damage during the development of atherosclerosis remains largely unclear. Herein, we established a novel strategy to address these issues from the glycomic perspective that has long been neglected. Using countercharged fluorescence protein staining and quantitative mass spectrometry, we found that heparan sulfate, a major component of the glycocalyx, was structurally altered by oxidative stress. Comparative proteomics and protein microarray analysis revealed several new heparan sulfate-binding proteins, among which alpha-2-Heremans-Schmid glycoprotein (AHSG) was identified as a critical protein. The molecular mechanism of AHSG with heparin was characterized through several methods. A heparan analog could relieve atherosclerosis by protecting heparan sulfate from degradation during oxidative stress and by reducing the accumulation of AHSG at lesion sites. In the present study, the molecular mechanism of anti-atherosclerotic effect of heparin through interaction with AHSG was revealed. These findings provide new insights into understanding of glycocalyx damage in atherosclerosis and lead to the development of corresponding therapeutics.


Assuntos
Aterosclerose , Glicocálix , Humanos , Heparitina Sulfato/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , Heparina/farmacologia
19.
Methods Mol Biol ; 2619: 249-256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662475

RESUMO

Heparin/heparan sulfate (HP/HS) is a class of acidic polysaccharides with many potential medical applications, especially HP, and its derivatives, low molecular weight heparins (LMWHs), have been widely used as anticoagulants to treat thrombosis for decades. However, the complex structure endows HP/HS a variety of biological functions and hinders the structural and functional studies of HP/HS. Heparinases derived from bacteria are useful tools for the structural studies of HP/HS as well as the preparation of LMWHs. The enzymatic method for the structural analysis of HP/HS chains is easy to operate, requires less samples, and is low cost. Here, we describe an enzymatic approach to investigate the primary sequences of the HP/HS oligosaccharides using a recently discovered exotype heparinase.


Assuntos
Heparina , Heparitina Sulfato , Heparina/química , Heparitina Sulfato/química , Heparina Liase , Anticoagulantes , Oligossacarídeos/química
20.
Carbohydr Polym ; 305: 120508, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737182

RESUMO

The sulfation patterns of chondroitin sulfate (CS)/dermatan sulfate (DS), which encode unique biological information, play critical roles in the various biological functions of CS/DS chains. CS/DS sulfatases, which can specifically hydrolyze sulfate groups, could potentially be essential tools for deciphering and changing the biological information encoded by these sulfation patterns. However, endosulfatase with high activity to efficiently hydrolyze the sulfate groups inside CS/DS polysaccharides have rarely been identified, which hinders the practical applications of CS/DS sulfatases. Herein, a novel CS/DS 4-O-endosulfatase (endoBI4SF) with a strong ability to completely remove 4-O-sulfated groups inside various CS/DS polysaccharides was identified and successfully used to investigate the biological roles of 4-O-sulfated CS/DS in vitro and in vivo. This study provides a much-needed tool to tailor the sulfation patterns and explore the related functions of 4-O-sulfated CS/DS chains in vitro and in vivo.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Polissacarídeos , Sulfatases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA