RESUMO
Growing evidence suggests prevalence of transcriptional condensates on chromatin, yet their mechanisms of formation and functional significance remain largely unclear. In human cancer, a series of mutations in the histone acetylation reader ENL create gain-of-function mutants with increased transcriptional activation ability. Here, we show that these mutations, clustered in ENL's structured acetyl-reading YEATS domain, trigger aberrant condensates at native genomic targets through multivalent homotypic and heterotypic interactions. Mechanistically, mutation-induced structural changes in the YEATS domain, ENL's two disordered regions of opposing charges, and the incorporation of extrinsic elongation factors are all required for ENL condensate formation. Extensive mutagenesis establishes condensate formation as a driver of oncogenic gene activation. Furthermore, expression of ENL mutants beyond the endogenous level leads to non-functional condensates. Our findings provide new mechanistic and functional insights into cancer-associated condensates and support condensate dysregulation as an oncogenic mechanism.
Assuntos
Neoplasias , Corpos Nucleares , Humanos , Domínios Proteicos , Cromatina/genética , Mutação , Neoplasias/genéticaRESUMO
The recognition of modified histones by "reader" proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here, we show that the AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 acetylation. Crystal structural studies revealed that AF9 YEATS adopts an eight-stranded immunoglobin fold and utilizes a serine-lined aromatic "sandwiching" cage for acetyllysine readout, representing a novel recognition mechanism that is distinct from that of known acetyllysine readers. ChIP-seq experiments revealed a strong colocalization of AF9 and H3K9 acetylation genome-wide, which is important for the chromatin recruitment of the H3K79 methyltransferase DOT1L. Together, our studies identified the evolutionarily conserved YEATS domain as a novel acetyllysine-binding module and established a direct link between histone acetylation and DOT1L-mediated H3K79 methylation in transcription control.
Assuntos
Código das Histonas , Metiltransferases/química , Metiltransferases/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Acetilação , Sequência de Aminoácidos , Regulação da Expressão Gênica , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transcrição GênicaRESUMO
Context-dependent dynamic histone modifications constitute a key epigenetic mechanism in gene regulation1-4. The Rpd3 small (Rpd3S) complex recognizes histone H3 trimethylation on lysine 36 (H3K36me3) and deacetylates histones H3 and H4 at multiple sites across transcribed regions5-7. Here we solved the cryo-electron microscopy structures of Saccharomyces cerevisiae Rpd3S in its free and H3K36me3 nucleosome-bound states. We demonstrated a unique architecture of Rpd3S, in which two copies of Eaf3-Rco1 heterodimers are asymmetrically assembled with Rpd3 and Sin3 to form a catalytic core complex. Multivalent recognition of two H3K36me3 marks, nucleosomal DNA and linker DNAs by Eaf3, Sin3 and Rco1 positions the catalytic centre of Rpd3 next to the histone H4 N-terminal tail for deacetylation. In an alternative catalytic mode, combinatorial readout of unmethylated histone H3 lysine 4 and H3K36me3 by Rco1 and Eaf3 directs histone H3-specific deacetylation except for the registered histone H3 acetylated lysine 9. Collectively, our work illustrates dynamic and diverse modes of multivalent nucleosomal engagement and methylation-guided deacetylation by Rpd3S, highlighting the exquisite complexity of epigenetic regulation with delicately designed multi-subunit enzymatic machineries in transcription and beyond.
Assuntos
Histonas , Lisina , Metilação , Complexos Multiproteicos , Nucleossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Acetilação , Microscopia Crioeletrônica , DNA Fúngico/genética , DNA Fúngico/metabolismo , Epigênese Genética , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismoRESUMO
Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic ß subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.
Assuntos
Reparo do DNA , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Espermatogênese , Testículo/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Quebras de DNA de Cadeia Dupla , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de SequênciaRESUMO
Eukaryotic chromosomes contain compartments of various functions, which are marked by and enriched with specific histone modifications. However, the molecular mechanisms by which these histone marks function in chromosome compartmentalization are poorly understood. Constitutive heterochromatin is a largely silent chromosome compartment characterized in part by H3K9me2 and 3. Here, we show that heterochromatin protein 1 (HP1), an H3K9me2 and 3 "reader," interacts with SUV39H1, an H3K9me2 and 3 "writer," and with TRIM28, an abundant HP1 scaffolding protein, to form complexes with increased multivalent engagement of H3K9me2 and 3-modified chromatin. H3K9me2 and 3-marked nucleosomal arrays and associated complexes undergo phase separation to form macromolecule-enriched liquid droplets. The droplets are reminiscent of heterochromatin as they are highly dense chromatin-containing structures that are resistant to DNase and exclude the general transcription factor TFIIB. Our data suggest a general mechanism by which histone marks regulate chromosome compartmentalization by promoting phase separation.
Assuntos
Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Histonas/metabolismo , Gotículas Lipídicas/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células HEK293 , Heterocromatina/genética , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Complexos Multiproteicos , Nucleossomos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismoRESUMO
The PTEN tumor suppressor is frequently mutated or deleted in cancer and regulates glucose metabolism through the PI3K-AKT pathway. However, whether PTEN directly regulates glycolysis in tumor cells is unclear. We demonstrate here that PTEN directly interacts with phosphoglycerate kinase 1 (PGK1). PGK1 functions not only as a glycolytic enzyme but also as a protein kinase intermolecularly autophosphorylating itself at Y324 for activation. The protein phosphatase activity of PTEN dephosphorylates and inhibits autophosphorylated PGK1, thereby inhibiting glycolysis, ATP production, and brain tumor cell proliferation. In addition, knockin expression of a PGK1 Y324F mutant inhibits brain tumor formation. Analyses of human glioblastoma specimens reveals that PGK1 Y324 phosphorylation levels inversely correlate with PTEN expression status and are positively associated with poor prognosis in glioblastoma patients. This work highlights the instrumental role of PGK1 autophosphorylation in its activation and PTEN protein phosphatase activity in governing glycolysis and tumorigenesis.
Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Glucose/metabolismo , Glicólise , PTEN Fosfo-Hidrolase/metabolismo , Fosfoglicerato Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , PTEN Fosfo-Hidrolase/genética , Fosfoglicerato Quinase/genética , Fosforilação , Prognóstico , Transdução de Sinais , Fatores de Tempo , Carga Tumoral , TirosinaRESUMO
Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.
Assuntos
Antígenos Nucleares/metabolismo , Histonas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Código das Histonas , Histonas/química , Humanos , Modelos Moleculares , Nucleossomos/química , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , XenopusRESUMO
The recent discovery of N6-methyladenine (N6-mA) in mammalian genomes suggests that it may serve as an epigenetic regulatory mechanism1. However, the biological role of N6-mA and the molecular pathways that exert its function remain unclear. Here we show that N6-mA has a key role in changing the epigenetic landscape during cell fate transitions in early development. We found that N6-mA is upregulated during the development of mouse trophoblast stem cells, specifically at regions of stress-induced DNA double helix destabilization (SIDD)2-4. Regions of SIDD are conducive to topological stress-induced unpairing of the double helix and have critical roles in organizing large-scale chromatin structures3,5,6. We show that the presence of N6-mA reduces the in vitro interactions by more than 500-fold between SIDD and SATB1, a crucial chromatin organizer that interacts with SIDD regions. Deposition of N6-mA also antagonizes SATB1 function in vivo by preventing its binding to chromatin. Concordantly, N6-mA functions at the boundaries between euchromatin and heterochromatin to restrict the spread of euchromatin. Repression of SIDD-SATB1 interactions mediated by N6-mA is essential for gene regulation during trophoblast development in cell culture models and in vivo. Overall, our findings demonstrate an unexpected molecular mechanism for N6-mA function via SATB1, and reveal connections between DNA modification, DNA secondary structures and large chromatin domains in early embryonic development.
Assuntos
Adenina/análogos & derivados , DNA/química , DNA/metabolismo , Desenvolvimento Embrionário , Proteínas de Ligação à Região de Interação com a Matriz/antagonistas & inibidores , Adenina/metabolismo , Animais , Pareamento de Bases , Desenvolvimento Embrionário/genética , Eucromatina/genética , Eucromatina/metabolismo , Feminino , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Células-Tronco/citologia , Células-Tronco/metabolismo , Termodinâmica , Trofoblastos/citologiaRESUMO
Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by 'reader' proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatin-reader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.
Assuntos
Linhagem da Célula , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Mutação com Ganho de Função , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Camundongos , Néfrons/metabolismo , Néfrons/patologia , Fatores de Transcrição/química , Fatores de Transcrição/genéticaRESUMO
Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes1-3. Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription4-7. However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND118,9. We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.
Assuntos
Histonas/química , Histonas/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Macrófagos/metabolismo , Masculino , Metilação , Camundongos , Modelos Moleculares , FosforilaçãoRESUMO
Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for "reader" proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Recently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine-binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias. The human genome encodes four YEATS domain proteins, including GAS41, a component of chromatin remodelers responsible for H2A.Z deposition onto chromatin; however, the importance of the GAS41 YEATS domain in human cancer remains largely unknown. Here we report that GAS41 is frequently amplified in human non-small cell lung cancer (NSCLC) and is required for cancer cell proliferation, survival, and transformation. Biochemical and crystal structural studies demonstrate that GAS41 binds to histone H3 acetylated on H3K27 and H3K14, a specificity that is distinct from that of AF9 or ENL. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) analyses in lung cancer cells reveal that GAS41 colocalizes with H3K27ac and H3K14ac on the promoters of actively transcribed genes. Depletion of GAS41 or disruption of the interaction between its YEATS domain and acetylated histones impairs the association of histone variant H2A.Z with chromatin and consequently suppresses cancer cell growth and survival both in vitro and in vivo. Overall, our study identifies GAS41 as a histone acetylation reader that promotes histone H2A.Z deposition in NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Amplificação de Genes , Genes cdc , Histonas/fisiologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologiaRESUMO
Prediction of drug-target interactions (DTIs) is essential in medicine field, since it benefits the identification of molecular structures potentially interacting with drugs and facilitates the discovery and reposition of drugs. Recently, much attention has been attracted to network representation learning to learn rich information from heterogeneous data. Although network representation learning algorithms have achieved success in predicting DTI, several manually designed meta-graphs limit the capability of extracting complex semantic information. To address the problem, we introduce an adaptive meta-graph-based method, termed AMGDTI, for DTI prediction. In the proposed AMGDTI, the semantic information is automatically aggregated from a heterogeneous network by training an adaptive meta-graph, thereby achieving efficient information integration without requiring domain knowledge. The effectiveness of the proposed AMGDTI is verified on two benchmark datasets. Experimental results demonstrate that the AMGDTI method overall outperforms eight state-of-the-art methods in predicting DTI and achieves the accurate identification of novel DTIs. It is also verified that the adaptive meta-graph exhibits flexibility and effectively captures complex fine-grained semantic information, enabling the learning of intricate heterogeneous network topology and the inference of potential drug-target relationship.
Assuntos
Algoritmos , Medicina , Benchmarking , Sistemas de Liberação de Medicamentos , SemânticaRESUMO
Maintenance and homeostasis of the quiescent center (QC) in Arabidopsis (Arabidopsis thaliana) root apical meristems are critical for stem cell organization and root development. Despite great progress in relevant research, the molecular mechanisms that determine the root stem cell fate and QC still need further exploration. In Arabidopsis, SUPPRESSOR OF FRIGIDA 4 (SUF4) encodes a C2H2-type zinc finger protein that represses flowering by transcriptional activation of FLOWERING LOCUS C (FLC) through the FRIGIDA (FRI) pathway, and EARLY BOLTING IN SHORT DAYS (EBS) is a bivalent histone reader that prevents premature flowering. Here, we found that SUF4 directly interacts with EBS in vivo and in vitro. Loss of function of SUF4 and/or EBS resulted in disorganization of the QC, aberrant cell division, and stunted root growth. RNA-seq and reverse transcription quantitative real-time polymerase chain reaction analysis revealed that SUF4 and EBS coregulate many root development-related genes. A series of biochemical analyses demonstrated that SUF4 directly binds to the promoter of SCARECROW (SCR), which encodes a key regulator of root development. Chromatin immunoprecipitation assay indicated that both SUF4 and EBS are recruited to the SCR locus in an interdependent manner to promote H3K4me3 levels and suppress H3K27me3 levels, thereby activating the expression of SCR. These findings improve our understanding of the function of SUF4 and EBS and provide insights into the molecular mechanism that couples a transcription factor and a histone methylation reader to modulate QC specification and root development in Arabidopsis.
RESUMO
The MLL1 gene is a frequent target for recurrent chromosomal translocations, resulting in transformation of hematopoietic precursors into leukemia stem cells. Here, we report on structure-function studies that elucidate molecular events in MLL1 binding of histone H3K4me3/2 marks and recruitment of the cyclophilin CyP33. CyP33 contains a PPIase and a RRM domain and regulates MLL1 function through HDAC recruitment. We find that the PPIase domain of CyP33 regulates the conformation of MLL1 through proline isomerization within the PHD3-Bromo linker, thereby disrupting the PHD3-Bromo interface and facilitating binding of the MLL1-PHD3 domain to the CyP33-RRM domain. H3K4me3/2 and CyP33-RRM target different surfaces of MLL1-PHD3 and can bind simultaneously to form a ternary complex. Furthermore, the MLL1-CyP33 interaction is required for repression of HOXA9 and HOXC8 genes in vivo. Our results highlight the role of PHD3-Bromo cassette as a regulatory platform, orchestrating MLL1 binding of H3K4me3/2 marks and cyclophilin-mediated repression through HDAC recruitment.
Assuntos
Ciclofilinas/metabolismo , Histona Desacetilases/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Sequência de Aminoácidos , Linhagem Celular , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Prolina/química , Domínios e Motivos de Interação entre ProteínasRESUMO
Chemical modifications of histones can mediate diverse DNA-templated processes, including gene transcription1-3. Here we provide evidence for a class of histone post-translational modification, serotonylation of glutamine, which occurs at position 5 (Q5ser) on histone H3 in organisms that produce serotonin (also known as 5-hydroxytryptamine (5-HT)). We demonstrate that tissue transglutaminase 2 can serotonylate histone H3 tri-methylated lysine 4 (H3K4me3)-marked nucleosomes, resulting in the presence of combinatorial H3K4me3Q5ser in vivo. H3K4me3Q5ser displays a ubiquitous pattern of tissue expression in mammals, with enrichment observed in brain and gut, two organ systems responsible for the bulk of 5-HT production. Genome-wide analyses of human serotonergic neurons, developing mouse brain and cultured serotonergic cells indicate that H3K4me3Q5ser nucleosomes are enriched in euchromatin, are sensitive to cellular differentiation and correlate with permissive gene expression, phenomena that are linked to the potentiation of TFIID4-6 interactions with H3K4me3. Cells that ectopically express a H3 mutant that cannot be serotonylated display significantly altered expression of H3K4me3Q5ser-target loci, which leads to deficits in differentiation. Taken together, these data identify a direct role for 5-HT, independent from its contributions to neurotransmission and cellular signalling, in the mediation of permissive gene expression.
Assuntos
Regulação da Expressão Gênica , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Serotonina/metabolismo , Fator de Transcrição TFIID/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Feminino , Proteínas de Ligação ao GTP/metabolismo , Glutamina/química , Glutamina/metabolismo , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Neurônios Serotoninérgicos/citologia , Transglutaminases/metabolismoRESUMO
Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis1-4. They are also implicated in human developmental disorders and cancers5-8, supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies9-11. However, the mechanisms that control the establishment and maintenance of intergenic DNA methylation remain poorly understood. Tatton-Brown-Rahman syndrome (TBRS) is a childhood overgrowth disorder that is defined by germline mutations in DNMT3A. TBRS shares clinical features with Sotos syndrome (which is caused by haploinsufficiency of NSD1, a histone methyltransferase that catalyses the dimethylation of histone H3 at K36 (H3K36me2)8,12,13), which suggests that there is a mechanistic link between these two diseases. Here we report that NSD1-mediated H3K36me2 is required for the recruitment of DNMT3A and maintenance of DNA methylation at intergenic regions. Genome-wide analysis shows that the binding and activity of DNMT3A colocalize with H3K36me2 at non-coding regions of euchromatin. Genetic ablation of Nsd1 and its paralogue Nsd2 in mouse cells results in a redistribution of DNMT3A to H3K36me3-modified gene bodies and a reduction in the methylation of intergenic DNA. Blood samples from patients with Sotos syndrome and NSD1-mutant tumours also exhibit hypomethylation of intergenic DNA. The PWWP domain of DNMT3A shows dual recognition of H3K36me2 and H3K36me3 in vitro, with a higher binding affinity towards H3K36me2 that is abrogated by TBRS-derived missense mutations. Together, our study reveals a trans-chromatin regulatory pathway that connects aberrant intergenic CpG methylation to human neoplastic and developmental overgrowth.
Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Intergênico/metabolismo , Histonas/metabolismo , Animais , Linhagem Celular , DNA Metiltransferase 3A , Estudo de Associação Genômica Ampla , Transtornos do Crescimento/genética , Transtornos do Crescimento/fisiopatologia , Humanos , Camundongos , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Síndrome de Sotos/genética , Síndrome de Sotos/fisiopatologiaRESUMO
Cytokines are essential components of the immune system and are recognized as significant biomarkers. However, detection of a single cytokine is not precise and reliable enough to satisfy the requirements for diagnosis. Herein, we developed a pattern recognition-based method for the multiplexed sensing of cytokines, which involves three-color-emitting boronic acid-decorated carbon dots (BCDs) and arginine-modified titanium carbide (Ti3C2 MXenes) as the sensor array. Initially, the fluorescence signals of the three BCDs were quenched by Ti3C2 MXenes. In the presence of cytokines, the fluorescence intensity of the BCDs was restored or further quenched by different cytokines. The fluorescence response occurs in two steps: first, boronic acid interacts with cis-diol functional groups of cytokines, and second, arginine headgroup selectively interacts with glycans. By exploiting the different competing binding of the BCDs and the cytokines toward Ti3C2 MXenes, seven cytokines and their mixtures can be effectively discriminated at a concentration of 20 ng mL-1. Furthermore, our sensor array demonstrated an excellent performance in classifying human oral cancer saliva samples from healthy individuals with clinically relevant specificity. The noninvasive method offers a rapid approach to cytokine analysis, benefiting early and timely clinical diagnosis and treatment.
Assuntos
Citocinas , Neoplasias Bucais , Humanos , Carbono , Ácidos Borônicos , Neoplasias Bucais/diagnóstico , ArgininaRESUMO
Cerebral ischemia-reperfusion injury (CIRI), a cause of cerebral dysfunction during cerebral infarction treatment, is closely associated with mitochondrial viscosity and hydrogen peroxide (H2O2). However, the accurate measurement of mitochondrial viscosity and H2O2 levels in CIRI is challenging because of the lack of sufficient selectivity and blood-brain barrier (BBB) penetration of existing monitoring tools related to CIRI, hampering the exploration of the role of mitochondrial viscosity and H2O2 in CIRI. To address this issue, we designed an activatable fluorescent probe, mitochondria-targeting styryl-quinolin-ium (Mito-IQS), with excellent properties including high selectivity, mitochondrial targeting, and BBB penetration, for the visualization of mitochondrial viscosity and H2O2 in the brain. Based on the real-time monitoring capabilities of the probe, bursts of mitochondrial viscosity and H2O2 levels were visualized during CIRI. This probe can be used to monitor the therapeutic effects of butylphthalein treatment. More importantly, in vivo experiments further confirmed that CIRI was closely associated with the mitochondrial viscosity and H2O2 levels. This discovery provides new insights and tools for the study of CIRI and is expected to accelerate the process of CIRI diagnosis, treatment, and drug design.
Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Peróxido de Hidrogênio , Corantes Fluorescentes , Viscosidade , MitocôndriasRESUMO
BACKGROUND: Lasianthus species are widely used in traditional Chinese folk medicine with high medicinal value. However, source materials and herbarium specimens are often misidentified due to morphological characteristics and commonly used DNA barcode fragments are not sufficient for accurately identifying Lasianthus species. To improve the molecular methods for distinguishing among Lasianthus species, we report the complete chloroplast (CP) genomes of Lasianthus attenuatus, Lasianthus henryi, Lasianthus hookeri, Lasianthus sikkimensis, obtained via high-throughput Illumina sequencing. RESULTS: These showed CP genomes size of 160164-160246 bp and a typical quadripartite structure, including a large single-copy region (86675-86848 bp), a small single-copy region (17177-17326 bp), and a pair of inverted repeats (28089-28135 bp). As a whole, the gene order, GC content and IR/SC boundary structure were remarkably similar among of the four Lasianthus CP genomes, the partial gene length and IR, LSC and SSC regions length are still different. The average GC content of the CP genomes was 36.71-36.75%, and a total of 129 genes were detected, including 83 different protein-coding genes, 8 different rRNA genes and 38 different tRNA genes. Furthermore, we compared our 4 complete CP genomes data with publicly available CP genome data from six other Lasianthus species, and we initially screened eleven highly variable region fragments were initially screened. We then evaluated the identification efficiency of eleven highly variable region fragments and 5 regular barcode fragments. Ultimately, we found that the optimal combination fragment' ITS2 + psaI-ycf4' could authenticated the Lasianthus species well. Additionally, the results of genome comparison of Rubiaceae species showed that the coding region is more conservative than the non-coding region, and the ycf1 gene shows the most significant variation. Finally, 49 species of CP genome sequences belonging to 16 genera of the Rubiaceae family were used to construct phylogenetic trees. CONCLUSIONS: Our research is the first to analyze the chloroplast genomes of four species of Lasianthus in detail and we ultimately determined that the combination fragment' ITS2 + psaI-ycf4' is the optimal barcode combination for identifying the genus of Lasianthus. Meanwhile, we gathered the available CP genome sequences from the Rubiaceae and used them to construct the most comprehensive phylogenetic tree for the Rubiaceae family. These investigations provide an important reference point for further studies in the species identification, genetic diversity, and phylogenetic analyses of Rubiaceae species.
Assuntos
Genoma de Cloroplastos , Filogenia , Marcadores Genéticos , Composição de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNARESUMO
A facile and general strategy is developed herein for the construction of circularly polarized luminescence (CPL) materials with simultaneously high fluorescence quantum efficiency (Φ) and large luminescence dissymmetry factor (glum). The self-assembly of fluorescent dye, disodium 4,4'-bis(2-sulfonatostyryl)biphenyl (CBS), with chiral diamines such as (R,R)/(S,S)-1,2-diaminocyclohexane (R/S-DACH) and R/S-1,2-diaminopropane (R/S-DAP), produces four chiral crystalline organic salt networks (COSNs). These as-synthesized organic salts emit strong blue-color CPL upon excitation, with both high Φ and glum values of up to 79% and 0.022. The well-defined molecular structures and arrangements of CBS are directly observed through single crystal X-ray analysis, offering crucial information regarding the origins of high-efficiency CPL performance. The chirality of amine is effectively transferred to CBS and further amplified to the supramolecular structure by multiple hydrogen bonding and π-π stacking interactions, giving rise to the large glum factors; meanwhile, the fixation and the ordered arrangement of CBS by these multiple interactions empower efficient suppression of molecular motions, facilitating strong fluorescence. This work can inspire the assembly of CPL organic materials with high Φ and glum via charge-assisted hydrogen bonds between fluorescent dyes and chiral inducers. It also offers important insight into the structural origins of supramolecular chirality and CPL performance.