Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Inorg Chem ; 63(6): 3145-3151, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277266

RESUMO

One-step purification of ethylene (C2H4) from ternary C2 hydrocarbon mixtures is a crucial task and an enduring challenge because of their similar molecular size and physical properties. Owing to their intriguing structural dynamics, flexible MOFs have attracted more attention for gas adsorption and separation. Herein, we report a flexible MOF FJI-W-66 that exhibits rarely seen "breathing" behaviors for C2 hydrocarbons. Upon activation, the channels of guest-free FJI-W-66a significantly contract to a nearly closed-pore state. FJI-W-66a shows the stepwise adsorption isotherms for C2 hydrocarbons, which suggests the occurrence of structural transformation between less open and more open phases. Breakthrough experiments provide evidence that FJI-W-66a can selectively separate C2H4 from C2H2/C2H4/C2H6 mixtures with different ratios under ambient conditions, realizing the one-step acquisition of C2H4 from ternary C2 hydrocarbons.

2.
Angew Chem Int Ed Engl ; 63(18): e202401754, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38380833

RESUMO

The one-step efficient separation of high-purity C2H4 from C2H4/C2H6 mixtures by hydrogen-bonded organic frameworks (HOFs) faces two problems: lack of strategies for constructing stable pores in HOFs and how to obtain high C2H6 selectivity. Herein, we have developed a microporous Mortise-Tenon-type HOF (MTHOF-1, MT is short for Mortise-Tenon structure) with a new self-assembly mode for C2H4/C2H6 separation. Unlike previous HOFs which usually possess discrete head-to-head hydrogen bonds, MTHOF-1 is assembled by unique consecutive side-by-side hydrogen bonds, which result in mortise-and-tenon pores decorated with orderly arranged amide groups and benzene rings. As expected, MTHOF-1 exhibits excellent stability under various conditions and shows clear separation trends for C2H6/C2H4. The IAST selectivity is as high as 2.15 at 298 K. More importantly, dynamic breakthrough experiments have demonstrated that MTHOF-1 can effectively separate the C2H6/C2H4 feed gas to obtain polymer-grade C2H4 in one step even under high-humidity conditions.

3.
J Med Virol ; 95(9): e29065, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37661566

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that causes adult T-cell leukemia/lymphoma (ATL). HTLV-1 encodes Tax protein that activates transcription from viral long terminal repeats (LTR). Multiple cofactors are involved in the regulation of HTLV-1 transcription via association with Tax. Yes-associated protein (YAP), which is the key effector of Hippo pathway, is elevated and activated in ATL cells. In this study, we reported that YAP protein suppressed Tax activation of HTLV-1 5' LTR but not 3' LTR. The activation of the 5' LTR by Tax was potentiated when YAP was depleted. Moreover, overexpression of YAP repressed HTLV-1 plus-strand viral gene expression and virion production, whereas compromising YAP by RNA inference augmented the expression of HTLV-1 protein. As mechanisms of YAP-mediated viral transcription inhibition, we found that YAP interacted with Tax, and prevented the association between Tax and p300. It finally led to the inhibition of recruitment of Tax to the Tax-responsive element in the 5' LTR of HTLV-1. Taken together, our results demonstrate the negative regulatory function of YAP in Tax activation of HTLV-1 transcription. It may achieve sufficient transcriptional repression to maintain persistent infection and long-term latency of HTLV-1 in the host cells.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia de Células T , Adulto , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Expressão Gênica , Infecção Persistente , RNA
4.
Entropy (Basel) ; 25(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36673311

RESUMO

Ion bombardment (IB) is a promising nanofabrication tool for self-organized nanostructures. When ions bombard a nominally flat solid surface, self-organized nanoripples can be induced on the irradiated target surface, which are called intrinsic nanoripples of the target material. The degree of ordering of nanoripples is an outstanding issue to be overcome, similar to other self-organization methods. In this study, the IB-induced nanoripples on bilayer systems with enhanced quality are revisited from the perspective of guided self-organization. First, power spectral density (PSD) entropy is introduced to evaluate the degree of ordering of the irradiated nanoripples, which is calculated based on the PSD curve of an atomic force microscopy image (i.e., the Fourier transform of the surface height. The PSD entropy can characterize the degree of ordering of nanoripples). The lower the PSD entropy of the nanoripples is, the higher the degree of ordering of the nanoripples. Second, to deepen the understanding of the enhanced quality of nanoripples on bilayer systems, the temporal evolution of the nanoripples on the photoresist (PR)/antireflection coating (ARC) and Au/ARC bilayer systems are compared with those of single PR and ARC layers. Finally, we demonstrate that a series of intrinsic IB-induced nanoripples on the top layer may act as a kind of self-organized template to guide the development of another series of latent IB-induced nanoripples on the underlying layer, aiming at improving the ripple ordering. The template with a self-organized nanostructure may alleviate the critical requirement for periodic templates with a small period of ~100 nm. The work may also provide inspiration for guided self-organization in other fields.

5.
Anal Chem ; 94(35): 12240-12247, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35994715

RESUMO

Hepatocellular carcinoma is a life-threatening malignant tumor found around the world for its high morbidity and mortality. Therefore, it is of great importance for sensitive analysis of liver cancer cells (HepG2 cells) in clinical diagnosis and biomedical research. To fulfill this demand, hollow CdIn2S4/In2S3 heterostructured microspheres (termed CdIn2S4/In2S3 for clarity) were prepared by a two-step hydrothermal strategy and applied for building a novel photoelectrochemical (PEC) cytosensor for ultrasensitive and accurate detection of HepG2 cells through specific recognition of CD133 protein on the cell surface with the respective aptamer. The optical properties of CdIn2S4/In2S3 were investigated by UV-vis diffuse reflectance spectroscopy (DRS) and PEC technology. By virtue of their appealing PEC characteristics, the resultant PEC sensor exhibited a wider dynamic linear range from 1 × 102 to 2 × 105 cells mL-1 with a lower limit of detection (LOD, 23 cells mL-1), combined by evaluating the expression level of CD133 protein stimulated by metformin as a benchmarked inhibitor. This work opens a valuable and feasible avenue for sensitive detection of diverse tumor cells, holding great potential in early clinical diagnosis and treatment coupled by screening inhibitors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , Células Hep G2 , Humanos , Microesferas
6.
Inorg Chem ; 61(19): 7530-7536, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35511047

RESUMO

The separation of C2-C3 alkyne/alkene mixtures is important but difficult work thanks to their similar physical and chemical properties. Crystalline porous materials with high alkyne adsorption and prominent separation selectivity of alkyne/alkene mixtures have been extensively investigated because of their energy-saving merits. Herein, we report a fluorinated hybrid microporous material (FJI-W1) that exhibits unexpected water and thermal stability. Gas sorption isotherms show that FJI-W1 has ultrahigh C2H2 and C3H4 adsorption capacities of 150 and 159 cm3/g, respectively. Furthermore, dynamic breakthrough experiments indicate that the intervals of breakthrough time between the two gases for 1:99 (v/v) C2H2/C2H4 and 1:99 (v/v) C3H4/C3H6 can be up to 230 and 600 min/g, respectively. Additionally, the tests with different flow rates and three-cycle breakthrough tests demonstrate that FJI-W1 has a remarkable C2-C3 alkyne/alkene separation performance.

7.
Angew Chem Int Ed Engl ; 61(24): e202201646, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352465

RESUMO

Selective separation using porous adsorbents is an energy-efficient alternative to traditional separation techniques. Stacked porous organic molecular frameworks (POMFs) capable of noncovalent π⋅⋅⋅π interactions are emerging as a new kind of adsorbents that facilitate green separation. Here we report a robust porous molecular crystal (TAPM-1), which is stabilized by multiple intermolecular π⋅⋅⋅π interactions. With its long-range π-stacking, TAPM-1 has excellent hydrophobicity, thermostability, recyclability, and high selectivity for aromatics over the corresponding cyclic aliphatics. This enables TAPM-1 to serve as the stationary phase in the high-resolution gas chromatographic separation of benzene and cyclohexane or toluene and methylcyclohexane.

8.
Nano Lett ; 16(1): 132-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26652061

RESUMO

The surface atomic structure has a remarkable impact on the physical and chemical properties of metal oxides and has been studied extensively by scanning tunneling microscopy. However, acquiring real-time information on the formation and evolution of the surface structure remains a great challenge. Here we use environmental transmission electron microscopy to directly observe the stress-induced reconstruction dynamics on the (001) surface of anatase TiO2. Our in situ results unravel for the first time how the (1 × 4) reconstruction forms and how the metastable (1 × 3) and (1 × 5) patterns transform into the (1 × 4) surface stable structure. With the support of first-principles calculations, we find that the surface evolution is driven by both low coordinated atoms and surface stress. This work provides a complete picture of the structural evolution of TiO2(001) under oxygen atmosphere and paves the way for future studies of the reconstruction dynamics of other solid surfaces.


Assuntos
Atmosfera/química , Oxigênio/química , Propriedades de Superfície , Titânio/química , Microscopia Eletrônica de Transmissão , Microscopia de Tunelamento
9.
Angew Chem Int Ed Engl ; 55(40): 12427-30, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27593991

RESUMO

Nanocrystal (NC) morphology, which decides the number of active sites and catalytic efficiency, is strongly determined by the gases involved in synthesis, treatment, and reaction. Myriad investigations have been performed to understand the morphological response to the involved gases. However, most prior work is limited to low pressures, which is far beyond realistic conditions. A dynamic morphological evolution of palladium-copper (PdCu) NC within a nanoreactor is reported, with atmospheric pressure hydrogen at the atomic scale. In situ transmission electron microscopy (TEM) videos reveal that spherical PdCu particles transform into truncated cubes at high hydrogen pressure. First principles calculations demonstrate that the surface energies decline with hydrogen pressure, with a new order of γH-001 <γH-110 <γH-111 at 1 bar. A comprehensive Wulff construction based on the corrected surface energies is perfectly consistent with the experiments. The work provides a microscopic insight into NC behaviors at realistic gas pressure and is promising for the shaping of nanocatalysts by gas-assisted treatments.

10.
ACS Appl Mater Interfaces ; 16(1): 1179-1186, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157244

RESUMO

Recently, methanol-to-olefins (MTO) technology has been widely used. The development of new adsorbents to separate MTO products and obtain high-purity ethylene (C2H4) and propylene (C3H6) has become an urgent task. Herein, an exceptionally highly water-stable metal-organic framework (MOF), [Cu3(OH)2(Me2BPZ)2]·(solvent)x (1) (H2Me2BPZ = 3,3'-dimethyl-1H,1'H-4,4'-bipyrazole) with hexagonal pores, has been elaborately designed and constructed. After being soaked in water for 7 days, it still maintains its structure, and the uptake of N2 at 77 K is unchanged. The adsorption capacity of C3H6 can reach 138 cm3 g-1, while the uptake of C2H4 is only 52 cm3 g-1 at 298 K and 1 bar. The dynamic breakthrough experiments show that the mixture of C3H6/C2H4 (50/50, v/v) can be efficiently separated in one step. High-purity C2H4 and C3H6 can be obtained through an adsorption and desorption cycle and the yields of C2H4 (purity ≥ 99.95%) and C3H6 (purity ≥ 99%) are 84 and 48 L kg-1, respectively. Surprisingly, when the flow rate is increased, the separation performance has no obvious change. Additionally, humidity has no effect on the separation performance. Finally, theoretical simulations indicate that there are stronger interactions between the C3H6 molecule and the framework, which are beneficial to capturing C3H6 over C2H4.

11.
ChemSusChem ; 16(7): e202202305, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625243

RESUMO

Recently, metal-organic frameworks (MOFs) as the cathode materials for aqueous zinc-ion batteries (ZIBs) received growing attention. Herein, a novel MOF, Ni-Ndi-trz (Ndi-trz=2,7-di(4H-1,2,4-triazol-4-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) was synthesized through a solvothermal method. Its rational design using a naphthalene diimide (Ndi) core allowed the formation of a four-fold interpenetrated pcu (primitive cubic) topology. The as-synthesized Ni-Ndi-trz is highly stable over a wide pH range (0-12) for 30 days, which is critical to ensure the decent cyclability of zinc-ion batteries (ZIBs). When used as the cathode material of ZIBs, it shows a high initial specific capacity of 90.7 mAh g-1 and excellent cycling stability. Remarkably, three-electrode system tests, ex situ FTIR, UV/Vis and XPS spectra revealed that the Ndi core of Ni-Ndi-trz undergoes a reversible interconversion between the keto and enol forms when interacting with Zn2+ ions. This work may shed light on the feasibility of designing novel MOFs and exploring their mechanisms for zinc ion batteries.

12.
Biomater Adv ; 154: 213618, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725871

RESUMO

Recently, nanozymes show increasing biological applications and promising possibilities for therapeutic intervention, while their mediated therapeutic outcomes are severely compromised due to their insufficient catalytic activity and specificity. Herein, ternary FeCoMn single atoms were incorporated into N-doped hollow mesoporous carbon nanospheres by in situ confinement pyrolysis at 800 °C as high-efficiency nanozyme. The confinement strategy endows the as-prepared nanozyme with the enhanced catalase- and oxidase-like activities. Specifically, the FeCoMn TSAs/N-HCSs nanozyme can decompose intracellular H2O2 to generate O2 and subsequently convert O2 to cytotoxic superoxide radicals (O2∙-), which can initiate cascade enzymatic reactions in tumor microenvironment (TME) for chemodynamic therapy (CDT). Moreover, the cancer therapy was largely enhanced by loading with doxorubicin (DOX). Impressively, the FeCoMn TSAs/N-HCSs nanozyme-mediated CDT and the DOX-induced chemotherapy endow the DOX@FeCoMn TSAs/N-HCSs with effective tumor inhibition, showing the superior therapeutic efficacy.


Assuntos
Nanosferas , Neoplasias , Peróxido de Hidrogênio , Benzopiranos , Carbono , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico
13.
ACS Appl Mater Interfaces ; 14(46): 52216-52222, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36356232

RESUMO

Considering the importance of C2H2 in industry, it is of great significance to develop porous materials for efficient C2H2/CO2 separation. Besides the high selectivity, the C2H2 adsorption capacity is another vital factor in C2H2/CO2 separation. However, the "trade-off" between these two factors is still perplexing. Rational pore design of metal-organic frameworks (MOFs) has been proven to be an effective way to solve the above problem. In this work, we have appropriately combined three kinds of strategies in the design of the MOF (FJI-H33), i.e., the introduction of open metal sites, construction of cage-like cavities, and adjustment of moderate pore size. As anticipated, FJI-H33 exhibits both outstanding C2H2 adsorption capacity and high C2H2/CO2 selectivity. At 298 K and 100 kPa, the C2H2 storage capacity of FJI-H33 is 154 cm3/g, while the CO2 uptake is only 80 cm3/g. The ideal adsorbed solution theory (IAST) selectivity of C2H2/CO2 (50:50) is calculated as high as 15.5 at 298 K. More importantly, the excellent practical separation performance was verified by breakthrough experiments. In addition, the calculation of adsorption sites and relevant energy by density functional theory (DFT) provides a good explanation for the excellent separation performance and pore design strategy.

14.
Sci Rep ; 12(1): 16882, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207434

RESUMO

The traditional construction monitoring methods of suspended pole-mounted decomposed towers are mostly manual monitoring. The monitoring personnel has multiple blind spots, and the possibility of misjudgment based on personal experience is relatively large. It is difficult to ensure the construction safety of the suspended pole decomposing tower. For this reason, combined with the current power Internet of Things technology, this paper develops an intelligent monitoring system for suspended pole-mounted decomposing towers. According to the construction technology and its safety requirements of inner suspension derrick for transmission tower erection in sections, this system is classified into intellisense layer, wireless transport layer and information integration layer. According to the physical characteristics of the seven major risk points of the inner suspension pole group tower, the intellisense layer developed corresponding sensing equipment to obtain risk information. In the wireless transport layer, the ZigBee and 4G communication technologies are selected to interconnect self-constituted LAN and 4G wide area networks, to complete on-site data interaction and long-distance transmission. In the information integration layer, the force of cable, the inclination and height of derrick, and the distance between derrick and tower are determined. The system has been verified by the 500 kV delivery project of Fujian Zhouning Pumped Storage Power Station. The average error of critical monitoring point data is 4.14%, and the average data transmission delays in the far and near fields of the system are 18 ms and 176 ms.


Assuntos
Eletrocardiografia , Tecnologia sem Fio , Monitorização Fisiológica
15.
ACS Nano ; 10(1): 763-9, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26645527

RESUMO

In situ atomic-scale transmission electron microscopy (TEM) can provide critical information regarding growth dynamics and kinetics of nanowires. A catalyst-aided nanowire growth mechanism has been well-demonstrated by this method. By contrast, the growth mechanism of nanowires without catalyst remains elusive because of a lack of crucial information on related growth dynamics at the atomic level. Herein, we present a real-time atomic-scale observation of the growth of tungsten oxide nanowires through an environmental TEM. Our results unambiguously demonstrate that the vapor-solid mechanism dominates the nanowire growth, and the oscillatory mass transport on the nanowire tip maintains the noncatalytic growth. Autocorrelation analysis indicates that adjacent nucleation events in the nanowire growth are independent of each other. These findings may improve the understanding of the vapor-solid growth mechanism of nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA