Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2315707121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489388

RESUMO

KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.


Assuntos
Encefalopatias , Transtornos do Neurodesenvolvimento , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Camundongos , Proteínas/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Transtornos do Neurodesenvolvimento/genética , Encefalopatias/genética , Neurogênese/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
2.
Hum Mol Genet ; 32(5): 720-731, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36048850

RESUMO

Hereditary hearing loss has a genetic and phenotypic heterogeneity. However, it is still difficult to explain this heterogeneity perfectly with known deafness genes. Here, we report a novel causative gene EPHA10 as well as its non-coding variant in 5' untranslated region identified in a family with post-lingual autosomal dominant non-syndromic hearing loss from southern China. One affected member of this family had an ideal hearing restoration after cochlear implantation. We speculated that there were probable deafness-causing abnormalities in the cochlea according to clinical imaging and auditory evaluations. A heterozygous variant c.-81_-73delinsAGC was found co-segregating with hearing loss. Epha10 was expressed in mouse cochlea at both transcription and translation levels. The variant caused upregulation of EPHA10 which may result from promoter activity enhancement after sequence change. Overexpression of Eph (the homolog of human EPHA10) exerted effects on the structure and function of chordotonal organ in fly model. In summary, our study linked pseudo-kinase EPHA10 to hearing loss in humans for the first time.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Animais , Camundongos , Humanos , Regulação para Cima , Regiões 5' não Traduzidas , Mutação , Surdez/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Linhagem , Receptores da Família Eph/genética
3.
Hum Mol Genet ; 32(10): 1722-1729, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36694982

RESUMO

Isolated hypogonadotropic hypogonadism (IHH) is a rare disease with hypogonadism and infertility caused by the defects in embryonic migration of hypothalamic gonadotropin-releasing hormone (GnRH) neurons, hypothalamic GnRH secretion or GnRH signal transduction. PROKR2 gene, encoding a G-protein coupled receptor PROKR2, is one of the most frequently mutated genes identified in IHH patients. However, the functional consequences of several PROKR2 mutants remain elusive. In this study, we systematically analyzed the Gαq, Gαs and ERK1/2 signaling of 23 IHH-associated PROKR2 mutations which are yet to be functionally characterized. We demonstrate that blockage of Gαq, instead of MAPK/ERK pathway, inhibited PROK2-induced migration of PROKR2-expressing cells, implying that PROKR2-related IHH results primarily due to Gαq signaling pathway disruption. Combined with previous reports, we categorized a total of 63 IHH-associated PROKR2 mutations into four distinct groups according Gαq pathway functionality: (i) neutral (N, >80% activity); (ii) low pathogenicity (L, 50-80% activity); (iii) medium pathogenicity (M, 20-50% activity) and (iv) high pathogenicity (H, <20% activity). We further compared the cell-based functional results with in silico mutational prediction programs. Our results indicated that while Sorting Intolerant from Tolerant predictions were accurate for transmembrane region mutations, mutations localized in the intracellular and extracellular domains were accurately predicted by the Combined Annotation Dependent Depletion prediction tool. Our results thus provide a functional database that can be used to guide diagnosis and appropriate genetic counseling in IHH patients with PROKR2 mutations.


Assuntos
Hipogonadismo , Humanos , Hipogonadismo/genética , Mutação , Hormônio Liberador de Gonadotropina/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Gonadotropinas , Receptores de Peptídeos/genética
4.
Ann Neurol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877824

RESUMO

OBJECTIVE: The aim of this study was to explore the pathogenesis of CLCN6-related disease and to assess whether its Cl-/H+-exchange activity is crucial for the biological role of ClC-6. METHODS: We performed whole-exome sequencing on a girl with development delay, intractable epilepsy, behavioral abnormities, retinal dysfunction, progressive brain atrophy, suggestive of neuronal ceroid lipofuscinoses (NCLs). We generated and analyzed the first knock-in mouse model of a patient variant (p.E200A) and compared it with a Clcn6-/- mouse model. Additional functional tests were performed with heterologous expression of mutant ClC-6. RESULTS: We identified a de novo heterozygous p.E200A variant in the proband. Expression of disease-causing ClC-6E200A or ClC-6Y553C mutants blocked autophagic flux and activated transcription factors EB (TFEB) and E3 (TFE3), leading to autophagic vesicle and cholesterol accumulation. Such alterations were absent with a transport-deficient ClC-6E267A mutant. Clcn6E200A/+ mice developed severe neurodegeneration with typical features of NCLs. Mutant ClC-6E200A, but not loss of ClC-6 in Clcn6-/- mice, increased lysosomal biogenesis by suppressing mTORC1-TFEB signaling, blocked autophagic flux through impairing lysosomal function, and increased apoptosis. Carbohydrate and lipid deposits accumulated in Clcn6E200A/+ brain, while only lipid storage was found in Clcn6-/- brain. Lysosome dysfunction, autophagy defects, and gliosis were early pathogenic events preceding neuron loss. INTERPRETATION: CLCN6 is a novel genetic cause of NCLs, highlighting the importance of considering CLCN6 mutations in the diagnostic workup for molecularly undefined forms of NCLs. Uncoupling of Cl- transport from H+ countertransport in the E200A mutant has a dominant effect on the autophagic/lysosomal pathway. ANN NEUROL 2024.

5.
J Virol ; 96(17): e0074122, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35980206

RESUMO

Within the past 2 decades, three highly pathogenic human coronaviruses have emerged, namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The health threats and economic burden posed by these tremendously severe coronaviruses have paved the way for research on their etiology, pathogenesis, and treatment. Compared to SARS-CoV and SARS-CoV-2, MERS-CoV genome encoded fewer accessory proteins, among which the ORF4b protein had anti-immunity ability in both the cytoplasm and nucleus. Our work for the first time revealed that ORF4b protein was unstable in the host cells and could be degraded by the ubiquitin proteasome system. After extensive screenings, it was found that UBR5 (ubiquitin protein ligase E3 component N-recognin 5), a member of the HECT E3 ubiquitin ligases, specifically regulated the ubiquitination and degradation of ORF4b. Similar to ORF4b, UBR5 can also translocate into the nucleus through its nuclear localization signal, enabling it to regulate ORF4b stability in both the cytoplasm and nucleus. Through further experiments, lysine 36 was identified as the ubiquitination site on the ORF4b protein, and this residue was highly conserved in various MERS-CoV strains isolated from different regions. When UBR5 was knocked down, the ability of ORF4b to suppress innate immunity was enhanced and MERS-CoV replication was stronger. As an anti-MERS-CoV host protein, UBR5 targets and degrades ORF4b protein through the ubiquitin proteasome system, thereby attenuating the anti-immunity ability of ORF4b and ultimately inhibiting MERS-CoV immune escape, which is a novel antagonistic mechanism of the host against MERS-CoV infection. IMPORTANCE ORF4b was an accessory protein unique to MERS-CoV and was not present in SARS-CoV and SARS-CoV-2 which can also cause severe respiratory disease. Moreover, ORF4b inhibited the production of antiviral cytokines in both the cytoplasm and the nucleus, which was likely to be associated with the high lethality of MERS-CoV. However, whether the host proteins regulate the function of ORF4b is unknown. Our study first determined that UBR5, a host E3 ligase, was a potential host anti-MERS-CoV protein that could reduce the protein level of ORF4b and diminish its anti-immunity ability by inducing ubiquitination and degradation. Based on the discovery of ORF4b-UBR5, a critical molecular target, further increasing the degradation of ORF4b caused by UBR5 could provide a new strategy for the clinical development of drugs for MERS-CoV.


Assuntos
Infecções por Coronavirus , Interações entre Hospedeiro e Microrganismos , Coronavírus da Síndrome Respiratória do Oriente Médio , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Virais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Citocinas/imunologia , Humanos , Imunidade Inata , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Terapia de Alvo Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
6.
J Neurol Neurosurg Psychiatry ; 94(6): 436-447, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36650038

RESUMO

BACKGROUND: The pathogenic missense mutations of the gelsolin (GSN) gene lead to familial amyloidosis of the Finnish type (FAF); however, our previous study identified GSN frameshift mutations existed in patients with Alzheimer's disease (AD). The GSN genotype-phenotype heterogeneity and the role of GSN frameshift mutations in patients with AD are unclear. METHOD: In total, 1192 patients with AD and 1403 controls were screened through whole genome sequencing, and 884 patients with AD were enrolled for validation. Effects of GSN mutations were evaluated in vitro. GSN, Aß42, Aß40 and Aß42/40 were detected in both plasma and cerebrospinal fluid (CSF). RESULTS: Six patients with AD with GSN P3fs and K346fs mutations (0.50%, 6/1192) were identified, who were diagnosed with AD but not FAF. In addition, 13 patients with AD with GSN frameshift mutations were found in the validation cohort (1.47%, 13/884). Further in vitro experiments showed that both K346fs and P3fs mutations led to the GSN loss of function in inhibiting Aß-induced toxicity. Moreover, a higher level of plasma (p=0.001) and CSF (p=0.005) GSN was observed in AD cases than controls, and a positive correlation was found between the CSF GSN and CSF Aß42 (r=0.289, p=0.009). Besides, the GSN level was initially increasing and then decreasing with the disease course and cognitive decline. CONCLUSIONS: GSN frameshift mutations may be associated with AD. An increase in plasma GSN is probably a compensatory reaction in AD, which is a potential biomarker for early AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Mutação da Fase de Leitura , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
7.
FASEB J ; 35(4): e21460, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724554

RESUMO

Spermatogenesis is a highly sophisticated process that comprises of mitosis, meiosis, and spermiogenesis. RNF216 (ring finger protein 216), an E3 ubiquitin ligase, has been reported to be essential for spermatogenesis and male fertility in mice. However, the stages affected by Rnf216 deficiency and its underlying molecular pathological mechanisms are still unknown. In this study, we generated Rnf216-deficient mice (Rnf216-/- ) using CRISPR-Cas9 technology. Knockout of Rnf216 led to infertility in male but not female mice. Rnf216 knockout affected the prophase of meiosis I, as no genotypic difference was observed until 12 dpp (days postpartum). Rnf216-/- spermatocytes were incompletely arrested at the zygotene stage and underwent apoptosis at approximately the pachytene stage. The proportion of zygotene spermatocytes was significantly increased, whereas the proportion of pachytene spermatocytes was significantly decreased in Rnf216-/- testes. Nevertheless, there was no significantly genotypic difference in the number of diplotene spermatocytes. We further revealed that the PKA catalytic subunit ß (PRKACB) was significantly increased, which subsequently resulted in elevated PKA activity in testes from adult as well as 9 dpp Rnf216-/- mice. RNF216 interacts with PRKACB and promotes its degradation through the ubiquitin-lysosome pathway. Collectively, our results revealed an important role for RNF216 in regulation of meiosis and PKA stability in the testes.


Assuntos
Meiose/fisiologia , Testículo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/genética , Feminino , Humanos , Masculino , Camundongos Transgênicos , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
J Med Genet ; 58(1): 66-72, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32389901

RESUMO

BACKGROUND: FGF8-FGFR1 signalling is involved in multiple biological processes, while impairment of this signalling is one of the main reasons for isolated hypogonadotropic hypogonadism (IHH). Recently, several negative modulators of FGF8-FGFR1 signalling were also found to be involved in IHH, including DUSP6, IL17RD, SPRY2 and SPRY4. The aim of this study was to investigate the genotypic and phenotypic spectra of these genes in a large cohort of Chinese patients with IHH. METHODS: A total of 196 patients with IHH were enrolled in this study. Whole-exome sequencing was performed to identify variants, which was verified by PCR and Sanger sequencing. RESULTS: Four heterozygous DUSP6 variants (p.S157I, p.R83Q, p.P188L and p.N355I) were found in six patients. Cryptorchidism, dental agenesis, syndactyly and blue colour blindness were commonly observed in patients with DUSP6 mutations. Six heterozygous IL17RD variants (p.P191L, p.G35V, p.S671L, p.A221T, p.I329M and p.I329V) were found in seven patients. Segregation analysis indicated that 100% (5/5) of probands inherited the IL17RD variants from their unaffected parents, and oligogenicity was found in 4/7 patients. One rare SPRY4 variant (p.T68S) was found in a female patient with Kallmann syndrome who also carried a PLXNA1 mutation. CONCLUSION: Our study greatly enriched the genotypic and phenotypic spectra of DUSP6, IL17RD and SPRY4 in IHH. Mutations in DUSP6 alone seem sufficient to cause IHH in an autosomal dominant manner, whereas IL17RD or SPRY4 mutations may cause IHH phenotypes in synergy with variants in other IHH-associated genes.


Assuntos
Fosfatase 6 de Especificidade Dupla/genética , Hipogonadismo/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Receptores de Interleucina/genética , Adolescente , Adulto , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Hipogonadismo/epidemiologia , Hipogonadismo/patologia , Masculino , Mutação/genética , Sequenciamento do Exoma , Adulto Jovem
9.
Nucleic Acids Res ; 48(14): 7944-7957, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32667666

RESUMO

Circadian clocks are endogenous oscillators that control ∼24-hour physiology and behaviors in virtually all organisms. The circadian oscillator comprises interconnected transcriptional and translational feedback loops, but also requires finely coordinated protein homeostasis including protein degradation and maturation. However, the mechanisms underlying the mammalian clock protein maturation is largely unknown. In this study, we demonstrate that necdin, one of the Prader-Willi syndrome (PWS)-causative genes, is highly expressed in the suprachiasmatic nuclei (SCN), the pacemaker of circadian clocks in mammals. Mice deficient in necdin show abnormal behaviors during an 8-hour advance jet-lag paradigm and disrupted clock gene expression in the liver. By using yeast two hybrid screening, we identified BMAL1, the core component of the circadian clock, and co-chaperone SGT1 as two necdin-interactive proteins. BMAL1 and SGT1 associated with the N-terminal and C-terminal fragments of necdin, respectively. Mechanistically, necdin enables SGT1-HSP90 chaperone machinery to stabilize BMAL1. Depletion of necdin or SGT1/HSP90 leads to degradation of BMAL1 through the ubiquitin-proteasome system, resulting in alterations in both clock gene expression and circadian rhythms. Taken together, our data identify the PWS-associated protein necdin as a novel regulator of the circadian clock, and further emphasize the critical roles of chaperone machinery in circadian clock regulation.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Relógios Circadianos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Relógios Circadianos/genética , Expressão Gênica , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Ubiquitina/metabolismo
10.
J Integr Plant Biol ; 64(10): 1901-1915, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35924740

RESUMO

Plant shoot phototropism is triggered by the formation of a light-driven auxin gradient leading to bending growth. The blue light receptor phototropin 1 (phot1) senses light direction, but how this leads to auxin gradient formation and growth regulation remains poorly understood. Previous studies have suggested phot1's role for regulated apoplastic acidification, but its relation to phototropin and hypocotyl phototropism is unclear. Herein, we show that blue light can cause phot1 to interact with and phosphorylate FERONIA (FER), a known cell growth regulator, and trigger downstream phototropic bending growth in Arabidopsis hypocotyls. fer mutants showed defects in phototropic growth, similar to phot1/2 mutant. FER also interacts with and phosphorylates phytochrome kinase substrates, the phot1 downstream substrates. The phot1-FER pathway acts upstream of apoplastic acidification and the auxin gradient formation in hypocotyl under lateral blue light, both of which are critical for phototropic bending growth in hypocotyls. Our study highlights a pivotal role of FER in the phot1-mediated phototropic cell growth regulation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fototropinas/genética , Fototropinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Fitocromo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz
11.
Zhonghua Nei Ke Za Zhi ; 61(8): 933-936, 2022 Aug 01.
Artigo em Zh | MEDLINE | ID: mdl-35922219

RESUMO

To investigate the clinical and genetic characteristics of patients with idiopathic hypogonadotropic hypogonadism (IHH), the clinical data of 23 patients with IHH were retrospectively analyzed. Gene analyses were accomplished with whole-exome sequencing (WES) and Sanger sequencing. Functional prediction of mutation sites was conducted using two bioinformatics platforms, SIFT and Polyphen. Among the 23 patients with IHH, 9 patients carried prokinin 2 (PROKR2) gene mutations including 4 missense mutations (p.W178S, p.Y113H, p.A103V, p.R164Q), and 1 frameshift mutation (p.D42delinsDED), the remaining 14 cases were found negative in gene sequencing. Functional prediction showed that the above mutations may affect protein function suggestive of a pathogenic role of PROKR2 mutation in the patients. There were no significant differences in the levels of follicle-stimulating hormone, luteinizing hormone, testosterone, and estradiol between the IHH patients with PROKR2 gene mutation and those without. PROKR2 gene mutation might associated with IHH, and the mutations reported in the present study could enrich the pathogenic spectrum of genes.


Assuntos
Hipogonadismo , Humanos , Hipogonadismo/genética , Mutação , Mutação de Sentido Incorreto , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Estudos Retrospectivos
12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(7): 847-857, 2022 Jul 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-36039580

RESUMO

OBJECTIVES: Congenital hypogonadotropic hypogonadism (CHH) is a rare congenital gonadal dysplasia caused by defects in the synthesis, secretion or signal transduction of hypothalamic gonadotropin releasing hormone. The main manifestations of CHH are delayed or lack puberty, low levels of sex hormones and gonadotropins, and may be accompanied with other clinical phenotypes. Some patients with CHH are also accompanied with anosmia or hyposmia, which is called Kalman syndrome (KS). ANOS1, located on X chromosome, is the first gene associated with CHH in an X-linked recessive manner. This study aims to provide a basis for the genetic diagnosis of CHH by analyzing the gene variant spectrum of ANOS1 in CHH and the relationship between clinical phenotype and genotype. METHODS: In this study, whole exome sequencing (WES) was used to screen rare sequencing variants (RSVs) of ANOS1 in a Chinese cohort of 165 male CHH patients. Four commonly used in silico tools were used to predict the function of the identified RSVs in coding region, including Polyphen2, Mutation Taster, SIFT, and Combined Annotation Dependent Depletion (CADD). Splice Site Prediction by Neural Network (NNSPLICE) was employed to predict possibilities of intronic RSVs to disrupt splicing. American College of Medical Genetics and Genomics (ACMG) guidelines was used to assess the pathogenicity of the detected RSVs. The ANOS1 genetic variant spectrum of CHH patients in Chinese population was established. The relationship between clinical phenotype and genotype was analyzed by collecting detailed clinical data. RESULTS: Through WES analysis for 165 CHH patients, ANOS1 RSVs were detected in 17 of them, with the frequency of 10.3%. A total of 13 RSVs were detected in the 17 probands, including 5 nonsense variants (p.T76X, p.R191X, p.W257X, p.R262X, and p.W589X), 2 splicing site variants (c.318+3A>C, c.1063-1G>C), and 6 missense variants (p.N402S, p.N155D, p.P504L, p.C157R, p.Q635P, and p.V560I). In these 17 CHH probands with ANOS1 RSVs, many were accompanied with other clinical phenotypes. The most common associated phenotype was cryptorchidism (10/17), followed by unilateral renal agenesis (3/17), dental agenesis (3/17), and synkinesia (3/17). Eight RSVs, including p.T76X, p.R191X, p.W257X, p.R262X, p.W589X, c.318+3A>C, c.1063-1G>C, and p.C157R, were predicted to be pathogenic or likely pathogenic ANOS1 RSVs by ACMG. Eight CHH patients with pathogenic or likely pathogenic ANOS1 variants had additional features. In contrast, only one out of nine CHH patients with non-pathogenic (likely benign or uncertain of significance) ANOS1 variants according to ACMG exhibited additional features. And function of the non-pathogenic ANOS1 variants accompanied with other CHH-associated RSVs. CONCLUSIONS: The ANOS1 genetic spectrum of CHH patients in Chinese population is established. Some of the correlations between clinical phenotype and genotype are also established. Our study indicates that CHH patients with pathogenic or likely pathogenic ANOS1 RSVs tend to exhibit additional phenotypes. Although non-pathogenic ANOS1 variants only may not be sufficient to cause CHH, they may function together with other CHH-associated RSVs to cause the disease.


Assuntos
Proteínas da Matriz Extracelular/genética , Hipogonadismo , Proteínas do Tecido Nervoso/genética , Povo Asiático/genética , China , Humanos , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Hipogonadismo/patologia , Masculino , Mutação , Linhagem
13.
Proc Natl Acad Sci U S A ; 115(45): 11567-11572, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348779

RESUMO

Whole-exome sequencing has been successful in identifying genetic factors contributing to familial or sporadic Parkinson's disease (PD). However, this approach has not been applied to explore the impact of de novo mutations on PD pathogenesis. Here, we sequenced the exomes of 39 early onset patients, their parents, and 20 unaffected siblings to investigate the effects of de novo mutations on PD. We identified 12 genes with de novo mutations (MAD1L1, NUP98, PPP2CB, PKMYT1, TRIM24, CEP131, CTTNBP2, NUS1, SMPD3, MGRN1, IFI35, and RUSC2), which could be functionally relevant to PD pathogenesis. Further analyses of two independent case-control cohorts (1,852 patients and 1,565 controls in one cohort and 3,237 patients and 2,858 controls in the other) revealed that NUS1 harbors significantly more rare nonsynonymous variants (P = 1.01E-5, odds ratio = 11.3) in PD patients than in controls. Functional studies in Drosophila demonstrated that the loss of NUS1 could reduce the climbing ability, dopamine level, and number of dopaminergic neurons in 30-day-old flies and could induce apoptosis in fly brain. Together, our data suggest that de novo mutations could contribute to early onset PD pathogenesis and identify NUS1 as a candidate gene for PD.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Receptores de Superfície Celular/genética , Adulto , Idade de Início , Animais , Apoptose/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/antagonistas & inibidores , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Sequência de Bases , Encéfalo/patologia , Estudos de Casos e Controles , Estudos de Coortes , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Diagnóstico Precoce , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Pais , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/metabolismo , Irmãos
14.
Eur Arch Otorhinolaryngol ; 278(8): 2807-2815, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32940795

RESUMO

PURPOSE: Waardenburg syndrome type 1 (WS1) is a rare genetic disorder characterized by dystopia canthorum, abnormal iris pigmentation, and congenital hearing loss with variable penetrance.WS1 is caused by mutations in paired box gene 3 (PAX3). The current study aimed to investigate the genetic cause of hearing loss in a four-generation Chinese WS1 family. METHODS: The phenotype of the study family was characterized using clinical evaluation and pedigree analysis. Target region high-throughput sequencing system was designed to screen the all coding exons and flanking intronic sequences of the six WS-associated genes. Sanger sequencing was used to identify the causative nucleotide changes and perform the co-segregating analysis. The expression, subcellular distribution, and transcriptional activity of the mutant PAX3 protein were analysis to reveal the functional consequences of the mutation. RESULTS: Based on diagnostic criteria, the proband of this pedigree classified as WS1. We identified a novel missense mutation (c.117 C > A, p. Asn39Lys) in exon 2 of the PAX3 gene. In vitro, the Asn39Lys PAX3 retained nuclear distribution ability. However, it failed to activate the melanocyte inducing transcription factor (MITF) promoter and impaired the function of WT PAX3. CONCLUSIONS: Our study reports a novel missense PAX3 mutation in a Chinese family and shows haploinsufficiency may be the underlying mechanism for the WS1 phenotype.


Assuntos
Fator de Transcrição PAX3 , Síndrome de Waardenburg , Humanos , Mutação de Sentido Incorreto , Fator de Transcrição PAX3/genética , Linhagem , Fenótipo , Síndrome de Waardenburg/genética
15.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639006

RESUMO

Breast cancer development is associated with macrophage infiltration and differentiation in the tumor microenvironment. Our previous study highlights the crucial function of reactive oxygen species (ROS) in enhancing macrophage infiltration during the disruption of mammary tissue polarity. However, the regulation of ROS and ROS-associated macrophage infiltration in breast cancer has not been fully determined. Previous studies identified retinoid orphan nuclear receptor alpha (RORα) as a potential tumor suppressor in human breast cancer. In the present study, we showed that retinoid orphan nuclear receptor alpha (RORα) significantly decreased ROS levels and inhibited ROS-mediated cytokine expression in breast cancer cells. RORα expression in mammary epithelial cells inhibited macrophage infiltration by repressing ROS generation in the co-culture assay. Using gene co-expression and chromatin immunoprecipitation (ChIP) analyses, we identified complex I subunits NDUFS6 and NDUFA11 as RORα targets that mediated its function in suppressing superoxide generation in mitochondria. Notably, the expression of RORα in 4T1 cells significantly inhibited cancer metastasis, reduced macrophage accumulation, and enhanced M1-like macrophage differentiation in tumor tissue. In addition, reduced RORα expression in breast cancer tissue was associated with an increased incidence of cancer metastasis. These results provide additional insights into cancer-associated inflammation, and identify RORα as a potential target to suppress ROS-induced mammary tumor progression.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Neoplasias/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Biomarcadores , Respiração Celular , Citocinas/metabolismo , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
16.
J Environ Manage ; 296: 113191, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246904

RESUMO

Recently, advanced informatics and sensing techniques show promise of enabling a new generation of smart stormwater systems, where real-time sensors are deployed to detect flooding hotspots. Existing stormwater design criteria assume that historical rainfall frequency and intensity are reliable predictors to place real-time sensing devices. However, nonstationarity in rainfall due to climate change violates this assumption by disturbing hydrologic regimes and relocating flooding spots. This paper proposes a novel methodology of combining unsupervised machine learning (Agglomerative Clustering) and analysis of variance (ANOVA) to optimize the sensor placement under uncertain rainfalls. An urban drainage network located in Salt Lake City, Utah, USA, is chosen as the case study to demonstrate the application of the proposed method. Results show that: i) the proposed Agglomerative Clustering and ANOVA integrated approach can efficiently and accurately pinpoint sensor locations for drainage flooding detection; ii) rainfall uncertainty has limited impacts on the number of sensors, but it induces significant effects on sensor locations from the historical period (2000-2009) to the future period (2040-2049). By exploring the effects of climate nonstationarity on sensor placement, this work aims to help engineers and decision-makers better respond to the changing climates and rainfall extremes in urban drainage catchments.


Assuntos
Chuva , Aprendizado de Máquina não Supervisionado , Cidades , Inundações , Incerteza
17.
Clin Genet ; 97(5): 696-703, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32060892

RESUMO

Isolated hypogonadotropic hypogonadism (IHH) is a rare disorder characterized by impaired sexual development and infertility, caused by the deficiency of hypothalamic gonadotropin-releasing hormone neurons. IHH is named Kallmann's syndrome (KS) or normosmic IHH (nIHH) when associated with a defective or normal sense of smell. Variants in SEMA3A have been recently identified in patients with KS. In this study, we screened SEMA3A variants in a cohort of Chinese patients with IHH by whole exome sequencing. Three novel heterozygous SEMA3A variants (R197Q, R617Q and V458I) were identified in two nIHH and one KS patients, respectively. Functional studies indicated that R197Q and R617Q variants were ineffective in activating the phosphorylation of FAK (focal adhesion kinase) in GN11 cells, despite normal production and secretion in HEK293T cells. The V458I SEMA3A had defect in secretion as it was not detected in the conditioned medium from HEK293T cells. Compared with wild type SEMA3A protein, all three SEMA3A mutant proteins were ineffective in inducing the migration of GN11 cells. Our study further showed the contribution of SEMA3A loss-of-function variants to the pathogenesis of IHH.


Assuntos
Hipogonadismo/genética , Infertilidade/genética , Síndrome de Kallmann/genética , Semaforina-3A/genética , Adulto , Movimento Celular/genética , Feminino , Quinase 1 de Adesão Focal/genética , Hormônio Liberador de Gonadotropina/genética , Células HEK293 , Heterozigoto , Humanos , Hipogonadismo/patologia , Infertilidade/patologia , Síndrome de Kallmann/patologia , Masculino , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma
18.
FASEB J ; 33(3): 4538-4546, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576231

RESUMO

Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disorder caused by the deficient production, secretion, or action of gonadotropin-releasing hormone. Prokineticin (PROK) receptor 2 ( PROKR2), a causative gene for IHH, encodes a GPCR PROKR2. When PROKR2 binds to its ligands PROKs, it may activate several signaling pathways, including IP3/Ca2+, MAPK, and cAMP pathways. However, the mutational spectrum of PROKR2 in Chinese patients with IHH has not been established. In the present study, we found that up to 13.3% (18/135) of patients with IHH in China carried mutations in PROKR2. Most of the variants in this study were private; however, a PROKR2 (c.533G > C; p.W178S) mutation was identified in 10 independent patients, implying a possible founder mutation. Functional studies indicated that 6 novel PROKR2 mutations led to decreased signaling to various extents. Two IHH-associated mutations (L218P and R270H) disrupted Gαq-dependent signaling but maintained normal Gαs and ERK1/2 signaling. A glutathione S-transferase pull-down experiment demonstrated that R270H mutation disrupted the interaction of intracellular loop 3 of PROKR2 to Gαq protein but not Gαs protein. Our results indicated that selective disruption of the interaction with a specific Gα-protein might underlie the biased signaling for certain IHH-associated PROKR2 mutations.-Zhao, Y., Wu, J., Jia, H., Wang, X., Zheng, R., Jiang, F., Chen, D.-N., Chen, Z., Li, J.-D. PROKR2 mutations in idiopathic hypogonadotropic hypogonadism: selective disruption of the binding to a Gα-protein leads to biased signaling.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hipogonadismo/genética , Mutação de Sentido Incorreto , Mutação Puntual , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Povo Asiático/genética , AMP Cíclico/metabolismo , Feminino , Efeito Fundador , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Hipogonadismo/etnologia , Sistema de Sinalização das MAP Quinases , Masculino , Mapeamento de Interação de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Frações Subcelulares/química , Sequenciamento do Exoma
19.
Nucleic Acids Res ; 46(D1): D64-D70, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29059379

RESUMO

Circadian rhythms govern various kinds of physiological and behavioral functions of the living organisms, and disruptions of the rhythms are highly detrimental to health. Although several databases have been built for circadian genes, a resource for comprehensive post-transcriptional regulatory information of circadian RNAs and expression patterns of disease-related circadian RNAs is still lacking. Here, we developed CirGRDB (http://cirgrdb.biols.ac.cn) by integrating more than 4936 genome-wide assays, with the aim of fulfilling the growing need to understand the rhythms of life. CirGRDB presents a friendly web interface that allows users to search and browse temporal expression patterns of interested genes in 37 human/mouse tissues or cell lines, and three clinical disorders including sleep disorder, aging and tumor. More importantly, eight kinds of potential transcriptional and post-transcriptional regulators involved in the rhythmic expression of the specific genes, including transcription factors, histone modifications, chromatin accessibility, enhancer RNAs, miRNAs, RNA-binding proteins, RNA editing and RNA methylation, can also be retrieved. Furthermore, a regulatory network could be generated based on the regulatory information. In summary, CirGRDB offers a useful repository for exploring disease-related circadian RNAs, and deciphering the transcriptional and post-transcriptional regulation of circadian rhythms.


Assuntos
Ritmo Circadiano/genética , Bases de Dados Genéticas , Animais , Proteínas CLOCK/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma , Estudo de Associação Genômica Ampla , Código das Histonas , Humanos , Internet , Camundongos , RNA/genética , RNA/metabolismo , Edição de RNA , Processamento Pós-Transcricional do RNA , Interface Usuário-Computador
20.
Biochem Biophys Res Commun ; 513(3): 746-752, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987822

RESUMO

Phosphoribosylformylglycinamidine synthase (PFAS) is an essential enzyme in de novo synthesis of purine. Previously, PFAS has been reported to modulate RIG-I activation during viral infection via deamidation. In this study, we sought to identify potential substrates that PFAS can deamidate. Flag-PFAS was transfected into HEK-293T cells and PFAS associated proteins were purified with anti-Flag M2 magnetic beads. PFAS associated proteins were identified using mass spectrometry and were analyzed using bioinformatics tools including KEGG pathway analysis, gene ontology annotation, and protein interaction network analysis. A total of 441 proteins is suggested to potentially interact with PFAS. Of this number, 12 were previously identified and 429 are newly identified. The interactions of PFAS with CAD, CCT2, PRDX1, and PHGDH were confirmed by co-immunoprecipitation and western blotting. This study is first to report the interaction of PFAS with several proteins which play physiological roles in tumor development including CAD, CCT2, PRDX1, and PHGDH. Furthermore, we show here that PFAS is able to deamidate PHGDH, and induce other posttranslational modification into CAD, CCT2 and PRDX1. The present data provide insight on the biological function of PFAS. Further study to explore the role of these protein interactions in tumorigenesis and other diseases is recommended.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Mapas de Interação de Proteínas , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Células HEK293 , Humanos , Mapeamento de Interação de Proteínas , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA