Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7977): 51-55, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37380029

RESUMO

The detection of starlight from the host galaxies of quasars during the reionization epoch (z > 6) has been elusive, even with deep Hubble Space Telescope observations1,2. The current highest redshift quasar host detected3, at z = 4.5, required the magnifying effect of a foreground lensing galaxy. Low-luminosity quasars4-6 from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)7 mitigate the challenge of detecting their underlying, previously undetected host galaxies. Here we report rest-frame optical images and spectroscopy of two HSC-SSP quasars at z > 6 with the JWST. Using near-infrared camera imaging at 3.6 and 1.5 µm and subtracting the light from the unresolved quasars, we find that the host galaxies are massive (stellar masses of 13 × and 3.4 × 1010 M☉, respectively), compact and disc-like. Near-infrared spectroscopy at medium resolution shows stellar absorption lines in the more massive quasar, confirming the detection of the host. Velocity-broadened gas in the vicinity of these quasars enables measurements of their black hole masses (1.4 × 109 and 2.0 × 108 M☉, respectively). Their location in the black hole mass-stellar mass plane is consistent with the distribution at low redshift, suggesting that the relation between black holes and their host galaxies was already in place less than a billion years after the Big Bang.

2.
Anal Chem ; 96(9): 3942-3950, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394220

RESUMO

Electrochemiluminescence (ECL), integrating the characteristics of electrochemistry and fluorescence, has the advantages of high sensitivity and low background. However, only a few studies have been reported for enantioselective sensing based on the ECL-active platform because of the huge challenges in constructing tunable chiral ECL luminophores. Here, we developed a facile strategy to design and prepare ECL-active chiral covalent organic frameworks (COFs) Ph-triPy+-(R)-Ru(II) for enantioselective sensing. In such an artificial structure, the ionic skeleton of COFs was beneficial to the electron transfer on the working electrode surface and the chiral Ru-ligand was used as the chiral ECL-active luminophore. It was found that Ph-triPy+-(R)-Ru(II) coupled with sodium persulfate (Na2S2O8) as the coreactant exhibited obvious ECL signals. More importantly, a clear difference toward l- and d-enantiomers was observed in the response of the ECL intensity, resulting in a uniform recognition law. That is, for amino alcohols, d-enantiomers (1 mM) measured by Ph-triPy+-(R)-Ru(II) showed a higher ECL intensity compared with l-enantiomers. Differently, amino acids (1 mM) gave an inverse recognition phenomenon. The ECL intensity ratios between l- and d-enantiomers (1 mM) are in the range of 1.25-1.94 for serine, aspartic acid, glutamic acid, valine, leucine, leucinol, and valinol. What is more interesting is that the ECL intensity was closely related to the concentration of l-amino alcohols and d-amino acids, whereas their inverse configurations remained unchanged. In a word, the present concept demonstrates a feasible direction toward chiral ECL-active COFs and their potential for efficient enantioselective sensing.

3.
Anal Chem ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335728

RESUMO

Although electroactive chiral covalent-organic frameworks (CCOFs) are considered an ideal platform for chiral electroanalysis, they are rarely reported due to the difficult selection of suitable precursors. Here, a facile strategy of liquid-liquid interfacial polymerization was carried out to synthesize the target electroactive CCOFs Ph-Py+-(S,S)-DPEA·PF6- and Ph-Py+-(R,R)-DPEA·PF6-. That is, a trivalent Zincke salt (4,4',4″-(benzene-1,3,5-triyl)tris(1-(2,4-dinitrophenyl)pyridin-1-ium)) trichloride (Ph-Py+-NO2) and enantiopure 1,2-diphenylethylenediamine (DPEA) were dissolved in water and chloroform, respectively. The Zincke reaction occurs at the interface, resulting in uniform porosity. As expected, the cyclic voltammetry and differential pulse voltammetry measurements showed that the tripyridinium units of the CCOFs afforded obvious electrochemical responses. When Ph-Py+-(S,S)-DPEA·PF6- was modified onto the surface of a glassy carbon electrode as a chiral sensor, the molecules, which included tryptophan, aspartic acid, serine, tyrosine, glutamic acid, mandelic acid, and malic acid, were enantioselectively recognized in the response of the peak current. Very importantly, the discriminative electrochemical signals were derived from Ph-Py+-(S,S)-DPEA·PF6-. The best peak current ratios between l- and d-enantiomers were in the range of 1.31-2.68. Besides, a good linear relationship between peak currents and enantiomeric excess (ee) values was established, which was successfully harnessed to determine the ee values for unknown samples. In a word, the current work provides new insight and potential of electroactive CCOFs for enantioselective sensing in a broad range.

4.
Anal Chem ; 96(19): 7626-7633, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688014

RESUMO

To date, achieving enantioselective electroanalysis for electrochemically silent chiral molecules is still highly desired. Here, an ionic covalent organic framework (COF) consisting of the pyridinium cation was derived from the tripyridinium Zincke salt and 1,4-phenylenediamine in a one-pot reaction. The electrochemical measurements revealed that the ionic backbone contributed to the electron transfer with a low charge transfer resistance. Besides, the π-π+ interaction between the pyridinium cation and ferrocenyl unit can promote the absorption of electroactive chiral ferrocenyl reagents into the hole of COF, so as to afford the electrochemical signals by themselves, replacing the testing enantiomers. As a result, the electroactive complex used as an electrochemical platform was highly effective at enantiomerically recognizing amino alcohols (prolinol, valinol, leucinol, and alaninol) and amino acids (methionine, serine, and penicillamine), giving the ratios of current intensity between l- and d-enantiomers in the range of 1.46-1.72. Moreover, the density functional theory calculations determined the possible intermolecular interactions between the testing enantiomers and chiral selector: namely, hydrogen bonds and electrostatic attractions. Overall, the present work offers an effective strategy to enlarge the electrochemical scope for chiral recognition based on electroactive chiral COFs.

5.
Anal Biochem ; 691: 115551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702023

RESUMO

A molecularly imprinted electrochemical sensor was facilely fabricated for the detection of thymol (THY). o-Phenylenediamine (oPD) was used as the functional monomer and electropolymerized on the surface of the glassy carbon electrode (GCE) by using THY as the templates. After the THY templates were removed with 50 % (v/v) ethanol, imprinted cavities complementary to the templates were formed within the poly(o-phenylenediamine) (PoPD) films. The resultant molecularly imprinted PoPD/GCE (MI-PoPD/GCE) was used for the detection of THY, and a wide linear range from 0.5 to 100 µM with a low limit of detection (LOD) of 0.084 µM were obtained under the optimal conditions. The developed MI-PoPD/GCE also displays high selectivity, reproducibility and stability for THY detection. Finally, the content of THY in the real samples was accurately determined by the as-fabricated MI-PoPD/GCE, demonstrating its high practicability and reliability.


Assuntos
Técnicas Eletroquímicas , Impressão Molecular , Fenilenodiaminas , Timol , Fenilenodiaminas/química , Timol/análise , Timol/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos , Polímeros Molecularmente Impressos/química , Carbono/química , Reprodutibilidade dos Testes
6.
Analyst ; 149(6): 1753-1758, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38363120

RESUMO

A chiral metal-organic framework (CMOF) was synthesized by introducing L-histidine (L-His) to zeolitic imidazolate framework-8 (ZIF-8) and then grafting with carboxymethyl-ß-cyclodextrin (CM-ß-CD). Compared with L-His-ZIF-8, the CM-ß-CD-functionalized L-His-ZIF-8 (L-His-ZIF-8-CD) showed significantly enhanced discrimination ability for the tryptophan (Trp) enantiomers owing to the inherent chirality of CM-ß-CD. The specificity of the chiral interface was also studied, and the results indicated that the discrimination ability for Trp enantiomers is significantly stronger than that for the enantiomers of cysteine (Cys) and tyrosine (Tyr), which might be due to the better matching between the indole ring of Trp and the chiral cavity of CM-ß-CD.

7.
BMC Psychiatry ; 24(1): 99, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317064

RESUMO

BACKGROUND: Observational studies and diagnostic criteria have indicated that Attention Deficit Hyperactivity Disorder (ADHD) frequently comorbid with various psychiatric disorders. Therefore, we conducted a Mendelian randomization (MR) study to explore this potential genetic association between ADHD and six psychiatric disorders. METHODS: Using a two-sample Mendelian randomization (MR) design, this study systematically screened genetic instrumental variables (IVs) based on the genome-wide association studies (GWAS) of ADHD and six psychiatric disorders, with the inverse variance weighted (IVW) method as the primary approach. RESULTS: The study revealed a positive and causal association between ADHD and the risk of ASD, with an odds ratio (OR) of 2.328 (95%CI: 1.241-4.368) in the IVW MR analysis. Additionally, ADHD showed a positive causal effect on an increased risk of schizophrenia, with an OR of 1.867 (95%CI: 1.260-2.767) in the IVW MR analysis. However, no causal effect of Tic disorder, Mental retardation, Mood disorders and Anxiety disorder with ADHD was found in the analysis mentioned above. CONCLUSION: Our MR analysis provides robust evidence of the causal role of ADHD in increasing the risk of ASD and schizophrenia. However, ADHD is not associated with the risk of Tic Disorder, Mental Retardation, Mood Disorders and Anxiety Disorder. This suggests the need for increased attention to the co-occurrence of ADHD-ASD or ADHD-schizophrenia and the implementation of timely intervention and treatment.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Deficiência Intelectual , Transtornos de Tique , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana
8.
BMC Psychiatry ; 24(1): 130, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365634

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is a highly effective treatment for depressive disorder. However, the use of ECT is limited by its cognitive side effects (CSEs), and no specific intervention has been developed to address this problem. As transcranial direct current stimulation (tDCS) is a safe and useful tool for improving cognitive function, the main objective of this study was to explore the ability to use tDCS after ECT to ameliorate the cognitive side effects. METHODS: 60 eligible participants will be recruited within two days after completing ECT course and randomly assigned to receive either active or sham stimulation in a blinded, parallel-design trial and continue their usual pharmacotherapy. The tDCS protocol consists of 30-min sessions at 2 mA, 5 times per week for 2 consecutive weeks, applied through 15-cm2 electrodes. An anode will be placed over the left dorsolateral prefrontal cortex (DLPFC), and a cathode will be placed over the right supraorbital cortex. Cognitive function and depressive symptoms will be assessed before the first stimulation (T0), after the final stimulation (T1), 2 weeks after the final stimulation (T2), and 4 weeks after the final stimulation (T3) using the Cambridge Neuropsychological Test Automated Battery (CANTAB). DISCUSSION: We describe a novel clinical trial to explore whether the administration of tDCS after completing ECT course can accelerates recovery from the CSEs. We hypothesized that the active group would recover faster from the CSEs and be superior to the sham group. If our hypothesis is supported, the use of tDCS could benefit eligible patients who are reluctant to receive ECT and reduce the risk of self-inflicted or suicide due to delays in treatment. TRIAL REGISTRATION DETAILS: The trial protocol is registered with https://www.chictr.org.cn/ under protocol registration number ChiCTR2300071147 (date of registration: 05.06.2023). Recruitment will start in November 2023.


Assuntos
Eletroconvulsoterapia , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Eletroconvulsoterapia/efeitos adversos , Depressão/terapia , Córtex Pré-Frontal/fisiologia , Cognição , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Artigo em Inglês | MEDLINE | ID: mdl-38961814

RESUMO

Acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) represents a primary cause of treatment failure in non-small cell lung cancer (NSCLC) patients. Chemokine (C-C motif) ligand 2 (CCL2) is recently found to play a pivotal role in determining anti-cancer treatment response. However, the role and mechanism of CCL2 in the development of EGFR-TKIs resistance have not been fully elucidated. In the present study, we focus on the function of CCL2 in the development of acquired resistance to EGFR-TKIs in NSCLC cells. Our results show that CCL2 is aberrantly upregulated in EGFR-TKIs-resistant NSCLC cells and that CCL2 overexpression significantly diminishes sensitivity to EGFR-TKIs. Conversely, CCL2 suppression by CCL2 synthesis inhibitor, bindarit, or CCL2 knockdown can reverse this resistance. CCL2 upregulation can also lead to enhanced migration and increased expressions of epithelial-mesenchymal transition (EMT) markers in EGFR-TKI-resistant NSCLC cells, which could also be rescued by CCL2 knockdown or inhibition. Furthermore, our findings suggest that CCL2-dependent EGFR-TKIs resistance involves the AKT-EMT signaling pathway; inhibition of this pathway effectively attenuates CCL2-induced cell migration and EMT marker expression. In summary, CCL2 promotes the development of acquired EGFR-TKIs resistance and EMT while activating AKT signaling in NSCLC. These insights suggest a promising avenue for the development of CCL2-targeted therapies that prevent EGFR-TKIs resistance in NSCLC.

10.
Nano Lett ; 23(19): 9126-9132, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37781926

RESUMO

Developing an efficient method to reversibly control materials' spin order is urgently needed but challenging in spintronics. Though various physical field control methods have been advancing, the chemical control of spin is little exploited. Here, we propose a chemical means for such spin manipulation, i.e., utilizing the well-known lactim-lactam tautomerization to reversibly modulate the magnetic phase transition in two-dimensional (2D) organometallic lattices. The proposal is verified by theoretically designing several 2D organometallic frameworks with antiferromagnetic to ferrimagnetic spin order transformation modulated by lactim-lactam tautomerization on organic linkers. The transition originates from the change in spin states of organic linkers (from singlet to doublet) via tautomerization. Such a transition further switches materials' electronic structures from normal semiconductors with zero spin polarization to bipolar magnetic semiconductors with valence and conduction band edges 100% spin polarized in opposite spin channels. Moreover, the magnitude of magnetic anisotropy energy also enhances by 5- to 9-fold.

11.
J Sci Food Agric ; 104(4): 2262-2271, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947497

RESUMO

BACKGROUND: Diquat is a common environmental pollutant, which can cause oxidative stress in humans and animals. Diquat exposure causes growth retardation and intestinal damage. Therefore, this study was performed to investigate the effects of melatonin on diquat-challenged piglets. RESULTS: Dietary supplementation with 2 mg kg-1 melatonin significantly increased the average daily gain and feed conversion rate in piglets. Melatonin increased antioxidant capacity, and improved intestinal epithelial barrier function of duodenum and jejunum in piglets. Moreover, melatonin was found to regulated the expression of immune and antioxidant-related genes. Melatonin also alleviated diquat-induced growth retardation and anorexia in diquat-challenged piglets. It also increased antioxidant capacity, and ameliorated diquat-induced intestinal epithelial barrier injury. Melatonin also regulated the expression of MnSOD and immuner-elated genes in intestinal. CONCLUSION: Dietary supplementation with 2 mg kg-1 melatonin increased antioxidant capacity to ameliorate diquat-induced oxidative stress, alleviate intestinal epithelial barrier injury, and increase growth performance in weaned piglets. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Melatonina , Humanos , Animais , Suínos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Diquat/efeitos adversos , Melatonina/farmacologia , Suplementos Nutricionais , Transtornos do Crescimento
12.
Anal Chem ; 95(22): 8569-8577, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37204809

RESUMO

Reliable chiral discrimination of enantiomers with simple devices is of great importance for chiral analysis. Here, a chiral sensing platform is developed for chiral discrimination through two different modes: electrochemistry and temperature. Au nanoparticles (AuNPs) are grown in situ on the nanosheets of MXene by utilizing the strong metal reduction ability of MXene, which can be further used for the anchoring of N-acetyl-l-cysteine (NALC), a commonly used chiral source, through Au-S bonds. Owing to the excellent electrical conductivity and photothermal conversion efficiency of MXene, the resultant MXene-AuNPs-NALC is applied in the construction of a chiral sensing platform for the discrimination of tryptophan (Trp) enantiomers through two different modes: electrochemistry and temperature. Compared with conventional single-mode chiral sensors, the proposed chiral sensing platform can integrate two different indicators (currents and temperature) into one chiral sensor, greatly improving the reliability of chiral discrimination.

13.
Anal Chem ; 95(15): 6467-6475, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37029721

RESUMO

Chiral metal-organic frameworks (CMOFs) have attracted considerable attention in chiral discrimination and separation. In this work, a simple CMOF is synthesized through a facile one-pot method by using Zn(II), tetra(4-carboxyphenyl)-porphyrin (TCPP), and d-phenylalanine methyl ester (d-Phe-OMe) as metal ion, organic ligand, and chiral source, respectively. Interestingly, the CMOFs synthesized at different temperatures (25 and 160 °C) display quite different morphologies and diametrically opposite chirality due to the different interaction modes between TCPP and d-Phe-OMe at 25 and 160 °C. Next, the CMOFs synthesized at 25 and 160 °C are utilized for the chiral discrimination of the isomers of tryptophan (Trp), resulting in exactly the reverse effect. The developed CMOF-based chiral sensors also exhibit excellent reproducibility, suggesting their great potential for chiral analysis.

14.
J Exp Bot ; 74(12): 3749-3764, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36964900

RESUMO

The corn leaf aphid (Rhopalosiphum maidis) is a major maize pest that frequently causes substantial yield losses. Exploring the genetic basis of resistance to aphids is important for improving maize yield and quality. Here, we used a maize recombinant inbred line population derived from two parents with different susceptibility to aphids, B73 (susceptible) and Abe2 (resistant), and performed quantitative trait locus (QTL) mapping using aphid resistance scores as an indicator. We mapped a stable QTL, qRTA6, to chromosome 6 using data from 2 years of field trials, which explained 40.12-55.17% of the phenotypic variation. To further investigate the mechanism of aphid resistance in Abe2, we constructed transcriptome and metabolome libraries from Abe2 and B73 leaves with or without aphid infestation at different time points. Integrating QTL mapping and transcriptome data revealed three aphid resistance candidate genes (Zm00001d035736, Zm00001d035751, and Zm00001d035767) associated with the hypersensitive response, the jasmonic acid pathway, and protein ubiquitination. Integrated transcriptomic and metabolomic analysis revealed that the differentially expressed genes and metabolites were enriched in flavonoid biosynthesis. These findings extend our understanding of the molecular mechanisms controlling aphid resistance in maize, and the QTL and candidate genes are valuable resources for increasing this resistance.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Zea mays/genética , Zea mays/metabolismo , Locos de Características Quantitativas , Multiômica , Folhas de Planta/genética
15.
Analyst ; 148(4): 919-925, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36692114

RESUMO

An electrochemical chiral sensing platform based on a multi-substituted ferrocene-cuprous ion (Cu+) complex is constructed for the discrimination of electroactive amino acid (AA) isomers. Due to the opposite configurations of the AA isomers, the developed multi-substituted ferrocene-Cu+ can preferably combine with a right-handed AA (D-AA) isomer to form the ternary complex of multi-substituted ferrocene-Cu+-D-AA through π-π interactions, resulting in higher peak currents of D-AA. Therefore, the isomers of electroactive AA can be successfully discriminated. Among the tested electroactive AA isomers, the chiral sensing platform exhibits higher discrimination capability toward the isomers of tryptophan (Trp) than that of tyrosine (Tyr) and cysteine (Cys), which might be ascribed to the stronger π-π interactions between the benzene ring of the multi-substituted ferrocene and the indole ring of the Trp isomers.


Assuntos
Aminoácidos , Triptofano , Metalocenos , Triptofano/química
16.
Anal Chem ; 94(26): 9399-9406, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35715196

RESUMO

Chiral analysis is of significant importance for living organisms since chirality is the fundamental phenomenon in nature. In this work, a bifunctional electrochemiluminescent (ECL) platform is constructed for chiral discrimination and chiral sensing. 3-Mercaptopropionic acid-functionalized CdSe quantum dots (CdSe QDs) are combined with aminated TiO2 nanotubes (NH2-TiNTs) via amidation. The resultant CdSe QDs/TiNTs display significantly enhanced ECL signals due to the synergistic effect between CdSe QDs and TiNTs, which are then used for the chiral discrimination of the isomers of nine chiral amino acids (AAs) in the presence of d-AA oxidase (DAAO). DAAO can selectively catalyze the oxidation of d-AAs to generate H2O2, which acts as the coreaction reagent and triggers the ECL signals of CdSe QDs/TiNTs, and thus, the isomers of the nine chiral AAs can be effectively discriminated. In addition, the as-constructed ECL platform can also be used for the sensitive detection of d-AAs in the presence of DAAO with a wide linear range and a low limit of detection. These findings suggest that the CdSe QDs/TiNTs can work as a bifunctional ECL platform (chiral discrimination and chiral sensing), which might be an advanced ECL platform for biomedical applications.


Assuntos
Compostos de Cádmio , Nanotubos , Pontos Quânticos , Compostos de Selênio , Compostos de Cádmio/química , Peróxido de Hidrogênio , Medições Luminescentes , Pontos Quânticos/química , Compostos de Selênio/química , Titânio
17.
Anal Chem ; 94(15): 6050-6056, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35389624

RESUMO

At present, chiral electroanalysis of nonelectroactive chiral compounds still remains a challenge because they cannot provide an electrochemical signal by themselves. Here, a strategy based on a competitive self-assembly interaction of a ferrocene (Fc) unit and the testing isomers entering into the cavity of ß-cyclodextrin (ß-CD) was carried out for chiral electroanalysis. First of all, the Fc derivative was directly bridged to silica microspheres, followed by inclusion into the cavity of ß-CD. As expected, once it was modified onto the surface of a carbon working electrode as an electrochemical sensor, SiO2@Fc-CD-WE, its differential pulse voltammetry signal would markedly decrease compared with the uncovered Fc. Next, when l- and d-isomers of amino acids that included histidine, threonine, phenylalanine, and glutamic acid were examined using SiO2@Fc-CD-WE, it showed an enantioselective entry of amino acids into the cavity of ß-cyclodextrin instead of Fc, resulting in the release of Fc with signal enhancement. For histidine, glutamic acid, and threonine, l-isomers showed a higher peak current response compared with d-isomers. The peak current ratios between l- and d-isomers were 2.88, 1.21, and 1.40, respectively. At the same time, the opposite phenomenon occurred for phenylalanine with a peak current ratio of 3.19 between d- and l-isomers. In summary, we are assured that the recognition strategy based on the supramolecular interaction can enlarge the detection range of chiral compounds by electrochemical analysis.


Assuntos
Aminoácidos , beta-Ciclodextrinas , Técnicas Eletroquímicas/métodos , Glutamatos , Histidina , Fenilalanina/análise , Dióxido de Silício , Estereoisomerismo , Treonina , beta-Ciclodextrinas/química
18.
Analyst ; 147(22): 5068-5074, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36200860

RESUMO

A novel electrochemical chiral sensor has been designed based on the principle of competitive host-guest interaction and utilized for the discrimination of electroinactive proline (Pro) isomers. Electroactive methylene blue (MB) was used as the signal probe, which was combined with multi-walled carbon nanotubes (MWCNTs)-decorated ß-cyclodextrin (ß-CD), via host-guest interaction, where the oxidation peak currents of MB decreased after isomers of Pro were combined with the MWCNTs-ß-CD via a competitive host-guest interaction. Due to the steric configuration of L-Pro matching the cavity of ß-CD, more L-Pro than D-Pro was combined with MWCNTs-ß-CD, resulting in a more pronounced decrease of MB peak currents. Therefore, the isomers of Pro could be discriminated. Besides Pro, the isomers of electroinactive histidine (His) could also be discriminated with the chiral sensor. In addition, the contents of L-Pro in non-racemic mixtures could be detected with the developed chiral sensor.


Assuntos
Técnicas Eletroquímicas , Nanotubos de Carbono , Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/química , Aminoácidos , Azul de Metileno/química
19.
Mikrochim Acta ; 189(3): 106, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166940

RESUMO

A surface protein-imprinted biosensor was constructed on a screen-printed carbon electrode (SPCE) for the detection of anti-human immunoglobulin G (anti-IgG). The SPCE was successively decorated with aminated graphene (NH2-G) and gold nanobipyramids (AuNBs) for signal amplification. Then 4-mercaptophenylboric acid (4-MPBA) was covalently anchored to the surface of AuNBs for capturing anti-IgG template through boronate affinity binding. The decorated SPCE was then deposited with an imprinting layer generated by the electropolymerization of pyrrole. After removal of the anti-IgG template by the dissociation of the boronate ester in an acidic solution, three-dimensional (3D) cavities complementary to the anti-IgG template were formed in the imprinting layer of polypyrrole (PPy). The molecularly imprinted polymers (MIP)-based biosensor was used for the detection of anti-IgG, exhibiting a wide linear range from 0.05 to 100 ng mL-1 and a low limit of detection of 0.017 ng mL-1 (S/N = 3). In addition, the MIP-based anti-IgG biosensor also shows high selectivity, reproducibility and stability. Finally, the practicability of the fabricated anti-IgG biosensor was demonstrated by accurate determination of anti-IgG in serum sample.


Assuntos
Técnicas Biossensoriais , Boratos/química , Ferricianetos/química , Imunoglobulina G/análise , Proteínas de Membrana/química , Impressão Molecular , Técnicas Eletroquímicas , Humanos
20.
J Am Chem Soc ; 143(34): 13478-13482, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339184

RESUMO

Carrier generation and migration are both pivotal to photoelectric (PE) response. Formation of a Schottky contact is conducive to promote carrier migration but cannot fundamentally magnify carrier generation, limiting the eventual PE performance. In this work, an Au@Ag/AgI Schottky contact is established by in situ growth of AgI nanotriangles on the surface of Au@Ag nanoparticles (NPs), and PE enhancement of the Schottky contact is realized by regulating localized surface plasmon resonance (LSPR) properties. In comparison with Ag/AgI Schottky contact, assembly of Au NPs in the center of Ag NPs adjusts the dominated LSPR property from hot-electron transfer (HET) to plasmon-induced resonance energy transfer (PIRET). With the concurrent manipulation of HET and PIRET, additional energy can be employed for carrier generation, while photogenerated electrons offset by hot electrons are reduced, which jointly enlarges PE responses of the Au@Ag/AgI Schottky contact up to 4 times. Benefitted from the etching of thiols to Ag-based materials, the Au@Ag/AgI Schottky contact is further applied to the construction of a photoelectrochemical cysteine sensor. This work proposes a general strategy to enhance PE responses of Schottky contacts, which may advance the design of LSPR-related PE systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA