Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(9): 246, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572114

RESUMO

Stress-induced cardiovascular diseases characterized by inflammation are among the leading causes of morbidity and mortality in postmenopausal women worldwide. Estradiol (E2) is known to be cardioprotective via the modulation of inflammatory mediators during stress. But the mechanism is unclear. TNFα, a key player in inflammation, is primarily converted to its active form by 'A Disintegrin and Metalloprotease 17' (ADAM17). We investigated if E2 can regulate ADAM17 during stress. Experiments were performed using female FVB wild-type (WT), C57BL/6 WT, and G protein-coupled estrogen receptor 1 knockout (GPER-1 KO) mice and H9c2 cells. The study revealed a significant increase in cardiac injury and inflammation during isoproterenol (ISO)-induced stress in ovariectomized (OVX) mice. Additionally, ADAM17's membrane content (mADAM17) was remarkably increased in OVX and GPER-1 KO mice during stress. However, in vivo supplementation of E2 significantly reduced cardiac injury, mADAM17, and inflammation. Also, administering G1 (GPER-1 agonist) in mice under stress reduced mADAM17. Further experiments demonstrated that E2, via GPER-1/PI3K pathway, localized ADAM17 at the perinuclear region by normalizing ß1AR-Gαs, mediating the switch from ß2AR-Gαi to Gαs, and reducing phosphorylated kinases, including p38 MAPKs and ERKs. Thus, using G15 and LY294002 to inhibit GPER-1 and its down signaling molecule, PI3K, respectively, in the presence of E2 during stress resulted in the disappearance of E2's modulatory effect on mADAM17. In vitro knockdown of ADAM17 during stress significantly reduced cardiac injury and inflammation, confirming its significant inflammatory role. These interesting findings provide novel evidence that E2 and G1 are potential therapeutic agents for ADAM17-induced inflammatory diseases associated with postmenopausal females.


Assuntos
Estradiol , Fosfatidilinositol 3-Quinases , Feminino , Camundongos , Animais , Estradiol/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Inflamação
2.
Phytother Res ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818771

RESUMO

Doxorubicin (Dox) is a highly effective anti-neoplastic agent. Still, its utility in the clinic has been hindered by toxicities, including vomiting, hematopoietic suppression and nausea, with cardiotoxicity being the most serious side effect. Genistein (Gen) is a natural product with extensive biological effects, including anti-oxidation, anti-tumor, and cardiovascular protection. This study evaluated whether Gen protected the heart from Dox-induced cardiotoxicity and explored the underlying mechanisms. Male Sprague-Dawley (SD) rats were categorized into control (Ctrl), genistein (Gen), doxorubicin (Dox), genistein 20 mg/kg/day + doxorubicin (Gen20 + Dox) and genistein 40 mg/kg/day + doxorubicin (Gen40 + Dox) groups. Six weeks after injection, immunohistochemistry (IHC), transmission electron microscopy (TEM), and clinical cardiac function analyses were performed to evaluate the effects of Dox on cardiac function and structural alterations. Furthermore, each heart histopathological lesions were given a score of 0-3 in compliance with the articles for statistical analysis. In addition, molecular and cellular response of H9c2 cells toward Dox were evaluated through western blotting, Cell Counting Kit-8 (CCK8), AO staining and calcein AM/PI assay. Dox (5 µM in vitro and 18 mg/kg in vivo) was used in this study. In vivo, low-dose Gen pretreatment protected the rat against Dox-induced cardiac dysfunction and pathological remodeling. Gen inhibited extracellular signal-regulated kinase1/2 (ERK1/2)'s phosphorylation, increased the protein levels of STAT3 and c-Myc, and decreased the autophagy and apoptosis of cardiomyocytes. U0126, a MEK1/2 inhibitor, can mimic the effect of Gen in protecting against Dox-induced cytotoxicity both in vivo and in vitro. Molecular docking analysis showed that Gen forms a stable complex with ERK1/2. Gen protected the heart against Dox-induced cardiomyocyte autophagy and apoptosis through the ERK/STAT3/c-Myc signaling pathway.

3.
Rev Cardiovasc Med ; 22(4): 1361-1381, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34957777

RESUMO

Due to their high prevalence and incidence, diabetes and atherosclerosis are increasingly becoming global public health concerns. Atherosclerosis is one of the leading causes of morbidity and disability in type 1 and/or type 2 diabetes patients. Atherosclerosis risk in diabetic patients is obviously higher than that of non-diabetic individuals. Diabetes-related glycolipid metabolism disorder has been shown to play a central role in atherosclerosis development and progression. Hyperglycemia and dyslipidemia increase the risks for atherosclerosis and plaque necrosis through multiple signaling pathways, such as a prolonged increase in reactive oxygen species (ROS) and inflammatory factors in cardiovascular cells. Notwithstanding the great advances in the understanding of the pathologies of diabetes-accelerated atherosclerosis, the current medical treatments for diabetic atherosclerosis hold undesirable side effects. Therefore, there is an urgent demand to identify novel therapeutic targets or alternative strategies to prevent or treat diabetic atherosclerosis. Burgeoning evidence suggests that plant and herbal medicines are closely linked with healthy benefits for diabetic complications, including diabetic atherosclerosis. In this review, we will overview the utilization of plant and herbal medicines for the treatment of diabetes-accelerated atherosclerosis. Furthermore, the underlying mechanisms of the ethnopharmacological therapeutic potentials against diabetic atherosclerosis are gathered and reviewed. It is foreseeable that the natural constituents from medicinal plants might be a new hope for the treatment of diabetes-accelerated atherosclerosis.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Dislipidemias , Plantas Medicinais , Aterosclerose/tratamento farmacológico , Aterosclerose/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dislipidemias/diagnóstico , Dislipidemias/tratamento farmacológico , Dislipidemias/epidemiologia , Humanos
4.
J Microsc ; 282(1): 73-83, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33196102

RESUMO

Secondary Ion Mass Spectrometry is an important technique for the study of the composition of a wide range of materials because of the exceptionally high sensitivity that allows the study of trace elements and the ability to distinguish isotopes that can be used as markers for reactions and transport processes. However, when studying nuclear materials, it is often necessary to analyse highly radioactive samples, and only rather few SIMS facilities are available in active environments. In this paper, we present a methodology using focussed ion beam milling to prepare samples from radioactive specimens that are sufficiently large to undertake SIMS mapping experiments over microstructurally significant regions, but with overall activities small enough to be readily transported and analysed by a SIMS instrument in a normal laboratory environment. Radioactive samples prepared using this methodology can also be used for correlative SIMS analysis with other analytical microscopies. SIMS results showing the distributions of deuterium in oxides on in-reactor corroded zirconium alloys are presented to demonstrate the potential of this sample preparation technique.

5.
Bioorg Med Chem Lett ; 32: 127717, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253879

RESUMO

A hallmark of cancer is the evasion of apoptosis. Myeloid cell leukemia-1 (MCL-1) is an anti-apoptotic member of the B-cell lymphoma-2 (BCL-2) family of proteins that regulates the mitochondrial apoptosis pathway. Overexpression of MCL-1 contributes to oncogenesis and confers resistance to cancer treatments. Protein-protein interactions (PPI) are constitutive of the dynamic interplay between the pro- and anti-apoptotic proteins of the BCL-2 family, which is integral to controlling the apoptotic threshold of cells. Therapeutic intervention by small molecule BH3 mimetics to pharmacologically target the PPI and antagonize MCL-1 has made significant progress in recent years in oncology with multiple candidates entering clinical trials. This digest accounts the state-of-art MCL-1 inhibitors with emphasis on their discovery medicinal chemistry, highlighted in structure-based drug design (SBDD) and biological evaluations.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Bibliotecas de Moléculas Pequenas/química , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/química , Desenho de Fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
6.
J Am Chem Soc ; 140(42): 13970-13975, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30265807

RESUMO

Pressure quenching of optical emission largely limits the potential application of many materials in optical pressure-sensing devices, since emission intensity is crucially connected to performance. Boosting visible-light emission at high pressure is, therefore, an important goal. Here, we demonstrate that the emission of CdSe nanocrystals (NCs) can be enhanced by more than an order of magnitude by compression. The brightest emission can be achieved at pressures corresponding to the phase transitions in different sized CdSe NCs. Very bright blue emission can be obtained by exploiting the increase in band gap with increasing pressure. First-principles calculations indicate that the interaction between the capping oleic acid (OA) layer and the CdSe core is strengthened with increased Hirshfeld charge at high pressure. The effective surface reconstruction associated with the removal of surface-related trap states is highly responsible for the pressure-induced emission enhancement of these CdSe NCs. These findings pave the way for designing a stress nanogauge with easy optical readout and provide a route for tuning bright-fluorescence imaging in response to an externally applied pressure.

7.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2154-2168, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29627363

RESUMO

The phenotypic transformation from differentiated to dedifferentiated vascular smooth muscle cells (VSMCs) plays a crucial role in VSMC proliferation and vascular remodeling in many cardiovascular diseases including hypertension. Nesfatin-1, a multifunctional adipocytokine, is critically involved in the regulation of blood pressure. However, it is still largely unexplored whether nesfatin-1 is a potential candidate in VSMC phenotypic switch and proliferation in hypertension. Experiments were carried out in Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), human VSMCs and primary rat aortic VSMCs. We showed that the expression of nesfatin-1 was upregulated in media layer of the aorta in SHR and SHR-derived VSMCs. Nesfatin-1 promoted VSMC phenotypic transformation, accelerated cell cycle progression and proliferation. Knockdown of nesfatin-1 inhibited the VSMC phenotype switch from a contractile to a synthetic state, attenuated cell cycle progression and retarded VSMC proliferation in SHR-derived VSMCs. Moreover, nesfatin-1-activated PI3K/Akt/mTOR signaling was abolished by JAK/STAT inhibitor WP1066, and the increased phosphorylation levels of JAK2/STAT3 in response to nesfatin-1 were suppressed by inhibition of PI3K/Akt/mTOR in VSMCs. Pharmacological blockade of the forming feedback loop between PI3K/Akt/mTOR and JAK2/STAT3 prevented the proliferation of nesfatin-1-incubated VSMCs and primary VSMCs from SHR. Chronic intraperitoneal injection of nesfatin-1 caused severe hypertension and cardiovascular remodeling in normal rats. In contrast, silencing of nesfatin-1 gene ameliorated hypertension, phenotype switching, and vascular remodeling in the aorta of SHR. Therefore, our data identified nesfatin-1 as a key modulator in hypertension and vascular remodeling by facilitating VSMC phenotypic switching and proliferation.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ligação a DNA/fisiologia , Hipertensão/etiologia , Miócitos de Músculo Liso/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Remodelação Vascular/fisiologia , Animais , Aorta/citologia , Pressão Sanguínea/fisiologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Hipertensão/patologia , Masculino , Músculo Liso Vascular/citologia , Nucleobindinas , Fenótipo , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/fisiologia
8.
PLoS Genet ; 11(9): e1005471, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26393916

RESUMO

Cell water permeability and cell wall properties are critical to survival of plant cells during freezing, however the underlying molecular mechanisms remain elusive. Here, we report that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1), interacts with histones H3 and H4 and associates with chromatin containing a target gene, blue-copper-binding protein (BCB), encoding a glycosylphosphatidylinositol-anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene, resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced lignin accumulation and increased freezing tolerance. The pal1pal2 double mutant (lignin content reduced by 30% compared with WT) also showed the freezing tolerant phenotype, and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte/genética , Lignina/genética , Proteínas Nucleares/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/biossíntese , Proteínas de Transporte/biossíntese , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Histonas/genética , Lignina/biossíntese
9.
Biochem Biophys Res Commun ; 490(3): 629-635, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28630004

RESUMO

Oxidized low-density lipoprotein (ox-LDL) is well known to disrupt normal functionality of endothelium, which plays a prominent role in endothelial dysfunction in many cardiovascular diseases. CO-releasing molecule 2 (CORM-2) is a promising candidate for treatment of cardiovascular diseases. However, it has not been defined whether CORM-2 might improve endothelial injury induced by ox-LDL. The present study was undertaken to determine the regulatory role of CORM-2 in cell injury of ox-LDL-treated human umbilical vein endothelial cells (HUVECs). Our results showed that ox-LDL inhibited the cell proliferation, but promoted apoptosis and release of cytochrome c (cytc) from mitochondrion into cytoplasm, stimulated the cleavage of caspase-3 and mitochondrial permeability transition pore (MPTP) opening. In addition, ox-LDL-incubated HUVECs exhibited excessive reactive oxygen species (ROS), increased protein levels of NADPH oxidase subunits p22phox, p47phox, NOX-2 and activation of Wnt/ß-catenin signaling pathway. However, pretreatment with CORM-2 significantly reduced cell apoptosis, release of cytc from mitochondrion into cytoplasm, MPTP opening and cleavage of caspase-3, suppressed the superoxide anion generation and Wnt/ß-catenin pathway activation in HUVECs response to ox-LDL. Collectively, we provide the evidence that CORM-2 attenuated ox-LDL-mediated endothelial apoptosis and oxidative stress by recovering the mitochondrial function and blocking Wnt/ß-catenin pathway.


Assuntos
Células Endoteliais/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Compostos Organometálicos/farmacologia , Substâncias Protetoras/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Citocromos c/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Plant J ; 81(3): 399-412, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25438658

RESUMO

The stem cell niche in the root meristem maintains pluripotent stem cells to ensure a constant supply of cells for root growth. Despite extensive progress, the molecular mechanisms through which root stem cell fates and stem cell niche activity are determined remain largely unknown. In Arabidopsis thaliana, the Pleiotropic Regulatory Locus 1 (PRL1) encodes a WD40-repeat protein subunit of the spliceosome-activating Nineteen Complex (NTC) that plays a role in multiple stress, hormone and developmental signaling pathways. Here, we show that PRL1 is involved in the control of root meristem size and root stem cell niche activity. PRL1 is strongly expressed in the root meristem and its loss of function mutation results in disorganization of the quiescent center (QC), premature stem cell differentiation, aberrant cell division, and reduced root meristem size. Our genetic studies indicate that PRL1 is required for confined expression of the homeodomain transcription factor WOX5 in the QC and acts upstream of the transcription factor PLETHORA (PLT) in modulating stem cell niche activity and root meristem size. These findings define a role for PRL1 as an important determinant of PLT signaling that modulates maintenance of the stem cell niche and root meristem size.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas de Transporte/fisiologia , Proteínas de Homeodomínio/fisiologia , Meristema/genética , Proteínas Nucleares/fisiologia , Arabidopsis/citologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Pontos de Checagem do Ciclo Celular , Diferenciação Celular/genética , Divisão Celular/genética , Proteínas de Homeodomínio/metabolismo , Meristema/citologia , Meristema/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Nicho de Células-Tronco/genética
11.
Anal Chem ; 88(6): 3281-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26854563

RESUMO

In this study, we demonstrate that Nano Secondary Ion Mass Spectrometry (NanoSIMS) can be used to differentiate different nitrogen-containing species commonly observed in atmospheric aerosol particles with micrometer or submicrometer spatial resolution, on the basis of the relative intensity of secondary ion signals, both in negative and positive secondary ion mode, without the need to chemically or physically separate the samples. Compounds tested include nitrate, nitrite, ammonium salts, urea, amino acids, sugars, organic acids, amides, triazine, imidazole, protein, and biological tissue. We show that NO2(-) secondary ions are unique to the decomposition of nitrate and nitrite salts, whereas NH4(+) secondary ions are unique to samples containing ammonium ions, with low signal intensities observed from amino groups but none from biological tissue. CN(-) signals are obtained from all nitrogen-bearing compounds, but relative signal intensities are the highest for organic nitrogen-containing compounds. We demonstrate that quantitative determination of the elemental fractions of carbon, oxygen, and nitrate in nanometer-sized aerosol samples using normalized secondary ion intensities is possible. We further demonstrate that stable isotope ratios measured on in-house standards of unknown isotopic composition using the (12)C(15)N(-)/(12)C(14)N(-) ratio (all nitrogen-containing species), the (15)N(16)O2(-)/(14)N(16)O2(-) ratio (nitrate and nitrite species), and the (15)NH4(+)/(14)NH4(+) ratio (ammonium salts, amino acids, and urea) are stable and sufficiently precise for nitrogen isotope analysis.

12.
Plant Physiol ; 168(3): 984-99, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25941314

RESUMO

Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Ácidos Indolacéticos/metabolismo , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Nodulação/genética , Bradyrhizobium/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes de Plantas , Ácidos Indolacéticos/farmacologia , MicroRNAs/genética , Modelos Biológicos , Proteínas de Plantas/metabolismo , Nodulação/efeitos dos fármacos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Reprodutibilidade dos Testes , Glycine max/metabolismo , Glycine max/microbiologia
13.
Am J Physiol Endocrinol Metab ; 307(12): E1153-65, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25352436

RESUMO

In response to hyperglycemia in patients with diabetes, many signaling pathways contribute to the pathogenesis of diabetic complications, including diabetic retinopathy (DR). Excessive production of inflammatory mediators plays an important role in this process. Amadori-glycated albumin, one of the major forms of advanced glycated end-products, has been implicated in DR by inducing inflammatory responses in microglia/macrophages. Our goal was to delineate the potential cross talk between class A scavenger receptor (SR-A) and the receptor for advanced glycated end-product (RAGE) in the context of DR. We show here that SR-A ablation caused an exacerbated form of DR in streptozotocin-injected C57BL/6J mice as evidenced by fundus imaging and electroretinography. Immunohistochemical staining and RT-PCR assay indicated that there was augmented activation of proinflammatory macrophages with upregulated synthesis of proinflammatory mediators in the retina in Sr-a(-/-) mice. Overexpression of SR-A suppressed RAGE-induced mitogen-activated protein kinase (MAPK) signaling, whereas RAGE activation in macrophages favored a proinflammatory (M1) phenotype in the absence of SR-A. Mechanistic analysis on bone marrow-derived macrophages and HEK293 cell line revealed that SR-A interacted with and inhibited the phosphorylation of mitogen-activated protein kinase kinase 7, the major kinase in the RAGE-MAPK-NF-κB signaling, thereby leading to diminished secretion of proinflammatory cytokines. Our findings suggest that the antagonism between SR-A and RAGE contributes to the pathogenesis of DR by nurturing a disease-prone macrophage phenotype. Therefore, specific agonist that boosts SR-A signaling could potentially provide benefits in the prevention and/or intervention of DR.


Assuntos
Retinopatia Diabética/genética , Receptor Cross-Talk/fisiologia , Receptores Imunológicos/fisiologia , Receptores Depuradores Classe A/fisiologia , Animais , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Células HEK293 , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais/genética , Estreptozocina
14.
J Exp Bot ; 65(17): 4863-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24935621

RESUMO

Water stress is one of the major environmental stresses causing growth retardation and yield loss of plants. In the past decades, osmotic adjustment, antioxidant protection, and stomatal movement have been extensively studied, but much less attention has been paid to the study of root system reprogramming to maximize water absorption and survival under water stress. Here, it is shown that polyethylene glycol (PEG)-simulated mild and moderate osmotic stress induced premature differentiation of the root apical meristem (RAM). It is demonstrated that RAM premature differentiation is a conserved adaptive mechanism that is widely adopted by various plants to cope with osmotic stress simulated by PEG 8000, and the occurrence of RAM premature differentiation is directly related to stress tolerance of plants. It is shown that the osmotic stress-induced premature differentiation caused growth cessation of primary roots allowing outgrowth of lateral roots. This work has uncovered a key mechanism for controlling the plastic development of the root system by which plants are capable of survival, growth, or reproduction under water stress.


Assuntos
Pressão Osmótica , Polietilenoglicóis/farmacologia , Triticum/efeitos dos fármacos , Meristema/química , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Triticum/química , Triticum/crescimento & desenvolvimento
15.
Int J Mol Sci ; 15(8): 13596-614, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25100171

RESUMO

As a warm climate species, soybean is highly sensitive to chilling temperatures. Exposure to chilling temperatures causes a significant reduction in the nitrogen fixation rate in soybean plants and subsequent yield loss. However, the molecular basis for the sensitivity of soybean to chilling is poorly understood. In this study, we identified cold-responsive miRNAs in nitrogen-fixing nodules of soybean. Upon chilling, the expression of gma-miR397a, gma-miR166u and gma-miR171p was greatly upregulated, whereas the expression of gma-miR169c, gma-miR159b, gma-miR319a/b and gma-miR5559 was significantly decreased. The target genes of these miRNAs were predicted and validated using 5' complementary DNA ends (5'-RACE) experiments, and qPCR analysis identified putative genes targeted by the cold-responsive miRNAs in response to chilling temperatures. Taken together, our results reveal that miRNAs may be involved in the protective mechanism against chilling injury in mature nodules of soybean.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Glycine max/metabolismo , MicroRNAs/metabolismo , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
16.
Materials (Basel) ; 17(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541395

RESUMO

In this paper, we demonstrate the significant impact of the solution flow and electrical field on the homogeneity of large-scale ZnO nanorod electrodeposition from an aqueous solution containing zinc nitrate and ammonium nitrate, primarily based on the X-ray fluorescence results. The homogeneity can be enhanced by adjusting the counter electrode size and solution flow rate. We have successfully produced relatively uniform nanorod arrays on an 8 × 10 cm2 i-ZnO-coated fluorine-doped tin oxide (FTO) substrate using a compact counter electrode and a vertical stirring setup. The as-grown nanorods exhibit similar surface morphologies and dominant, intense, almost uniform near-band-edge emissions in different regions of the sample. Additionally, the surface reflectance is significantly reduced after depositing the ZnO nanorods, achieving a moth-eye effect through subwavelength structuring. This effect of the nanorod array structure indicates that it can improve the utilization efficiency of light reception or emission in various optoelectronic devices and products. The large-scale preparation of ZnO nanorods is more practical to apply and has an extremely broad application value. Based on the research results, it is feasible to prepare large-scale ZnO nanorods suitable for antireflective coatings and commercial applications by optimizing the electrodeposition conditions.

17.
Bioorg Med Chem Lett ; 23(5): 1238-44, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23374866

RESUMO

The discovery, structure-based design, synthesis, and optimization of NIK inhibitors are described. Our work began with an HTS hit, imidazopyridinyl pyrimidinamine 1. We utilized homology modeling and conformational analysis to optimize the indole scaffold leading to the discovery of novel and potent conformationally constrained inhibitors such as compounds 25 and 28. Compounds 25 and 31 were co-crystallized with NIK kinase domain to provide structural insights.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Alcinos/síntese química , Alcinos/química , Alcinos/farmacologia , Aminas/síntese química , Aminas/química , Aminas/farmacologia , Desenho de Fármacos , Células HT29 , Humanos , Ligação de Hidrogênio , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Modelos Moleculares , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/química , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Quinase Induzida por NF-kappaB
18.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837365

RESUMO

A high-performance GaAs nanowire photodetector was fabricated based on the modification of Au nanoparticles (NPs). Au nanoparticles prepared by thermal evaporation were used to modify the defects on the surface of GaAs nanowires. Plasmons and Schottky barriers were also introduced on the surface of the GaAs nanowires, to enhance their light absorption and promote the separation of carriers inside the GaAs nanowires. The research results show that under the appropriate modification time, the dark current of GaAs nanowire photodetectors was reduced. In addition, photocurrent photodetectors increased from 2.39 × 10-10 A to 1.26 × 10-9 A. The responsivity of GaAs nanowire photodetectors correspondingly increased from 0.569 A∙W-1 to 3.047 A∙W-1. The reasons for the improvement of the photodetectors' performance after modification were analyzed through the energy band theory model. This work proposes a new method to improve the performance of GaAs nanowire photodetectors.

19.
Food Funct ; 14(2): 934-945, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36541083

RESUMO

Backgrounds: Doxorubicin (Dox) is a classical antitumor antibiotic widely restricted for use due to its cardiotoxicity. Daidzein (Daid) is a soy isoflavone that enhances antioxidant enzyme systems and inhibits apoptosis to prevent cardiovascular diseases. In this study, we intended to assess whether Daid protects against Dox-induced cardiotoxicity and explored its underlying mechanisms. Methods: Male Sprague-Dawley (SD) rats were divided into five groups: control (Ctrl), 40 mg per kg per day Daidzein (Daid), 3 mg per kg per week doxorubicin (Dox), 20 mg per kg per day Daidzein + 3 mg per kg per week doxorubicin (Daid20 + Dox) and 40 mg per kg per day Daidzein + 3 mg per kg per week doxorubicin (Daid40 + Dox) groups. Cardiac function assessments, immunohistochemistry (IHC) and immunofluorescence (IF) analyses were initially performed in each group of rats. Secondly, the cell proliferative capacity analysis, AO staining, and LC3 puncta analysis were employed to evaluate the cellular response to Dox in H9c2 cells. Ultimately, the protein expressions of cleaved caspase3, LC3 II, Bcl-2, Bax, Akt, p-Akt, and cyclin D1 were examined by western blotting. Results: Pretreatment with a low dose of Daid rather than a high dose significantly enhanced cardiac function and alleviated histopathological deterioration of cardiomyocytes induced by Dox. Daid downregulated the protein levels of Bax, LC3 II, cleaved caspase3 and p-Akt, while up-regulating Bcl-2 and cyclin D1. The Akt agonist SC79 could invalidate all the protective effects of Daid both in vivo and in vitro. Conclusions: Daid reduced autophagy and apoptosis by inhibiting the PI3K/Akt pathway, thereby protecting the hearts from Dox-induced cardiac damage.


Assuntos
Ciclina D1 , Isoflavonas , Ratos , Masculino , Animais , Ciclina D1/metabolismo , Cardiotoxicidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linhagem Celular , Doxorrubicina , Miócitos Cardíacos , Apoptose , Isoflavonas/farmacologia , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estresse Oxidativo
20.
J Adv Res ; 51: 161-179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36334887

RESUMO

INTRODUCTION: Meteorin-like hormone (Metrnl) is ubiquitously expressed in skeletal muscle, heart, and adipose with beneficial roles in obesity, insulin resistance, and inflammation. Metrnl is found to protect against cardiac hypertrophy and doxorubicin-induced cardiotoxicity. However, its role in diabetic cardiomyopathy (DCM) is undefined. OBJECTIVES: We aimed to elucidate the potential roles of Metrnl in DCM. METHODS: Gain- andloss-of-function experimentswere utilized to determine the roles of Metrnl in the pathological processes of DCM. RESULTS: We found that plasma Metrnl levels, myocardial Metrnl protein and mRNA expressions were significantly downregulated in both streptozotocin (STZ)-induced (T1D) mice and leptin receptor deficiency (db/db) (T2D) mice. Cardiac-specific overexpression (OE) of Metrnl markedly ameliorated cardiac injury and dysfunction in both T1D and T2D mice. In sharp contrast, specific deletion of Metrnl in the heart had the opposite phenotypes. In parallel, Metrnl OE ameliorated, whereas Metrnl downregulation exacerbated high glucose (HG)-elicited hypertrophy, apoptosis and oxidative damage in primary neonatal rat cardiomyocytes. Antibody-induced blockade of Metrnl eliminated the effects of benefits of Metrnl in vitro and in vivo. Mechanistically, Metrnl activated the autophagy pathway and inhibited the cGAS/STING signaling in a LKB1/AMPK/ULK1-dependent mechanism in cardiomyocytes. Besides, Metrnl-induced ULK1 phosphorylation facilitated the dephosphorylation and mitochondrial translocation of STING where it interacted with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase that was responsible for ubiquitination and degradation of STING, rendering cardiomyocytes sensitive to autophagy activation. CONCLUSION: Thus, Metrnl may be an attractive therapeutic target or regimen for treating DCM.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Animais , Camundongos , Ratos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Miócitos Cardíacos , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA