Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 623(7987): 562-570, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880372

RESUMO

Vision enables both image-forming perception, driven by a contrast-based pathway, and unconscious non-image-forming circadian photoentrainment, driven by an irradiance-based pathway1,2. Although two distinct photoreceptor populations are specialized for each visual task3-6, image-forming photoreceptors can additionally contribute to photoentrainment of the circadian clock in different species7-15. However, it is unknown how the image-forming photoreceptor pathway can functionally implement the segregation of irradiance signals required for circadian photoentrainment from contrast signals required for image perception. Here we report that the Drosophila R8 photoreceptor separates image-forming and irradiance signals by co-transmitting two neurotransmitters, histamine and acetylcholine. This segregation is further established postsynaptically by histamine-receptor-expressing unicolumnar retinotopic neurons and acetylcholine-receptor-expressing multicolumnar integration neurons. The acetylcholine transmission from R8 photoreceptors is sustained by an autocrine negative feedback of the cotransmitted histamine during the light phase of light-dark cycles. At the behavioural level, elimination of histamine and acetylcholine transmission impairs R8-driven motion detection and circadian photoentrainment, respectively. Thus, a single type of photoreceptor can achieve the dichotomy of visual perception and circadian photoentrainment as early as the first visual synapses, revealing a simple yet robust mechanism to segregate and translate distinct sensory features into different animal behaviours.


Assuntos
Ritmo Circadiano , Drosophila melanogaster , Células Fotorreceptoras de Invertebrados , Percepção Visual , Animais , Acetilcolina/metabolismo , Relógios Biológicos/fisiologia , Relógios Biológicos/efeitos da radiação , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Drosophila melanogaster/efeitos da radiação , Retroalimentação Fisiológica , Histamina/metabolismo , Neurotransmissores/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Receptores Colinérgicos/metabolismo , Receptores Histamínicos/metabolismo , Percepção Visual/fisiologia , Percepção Visual/efeitos da radiação
2.
Exp Cell Res ; 405(2): 112680, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34090862

RESUMO

Ferredoxin reductase (FDXR), a mitochondrial membrane-associated flavoprotein, is essential for electron transfer and modulates p53-dependent apoptosis in cancer cells.FDXR may be implicated in epidermal and sebocytic differentiation, but its explicit function in sebocytes remains to be elucidated. In the present study, immunohistochemistry revealed that FDXR expression was increased in sebaceous cells of acne lesions. FDXR, PPARγ, LXRα/ß, SREBP1 and Sox9 expression was incremental during sebocyte differentiation. FDXR overexpression induced by Ad-GFP-FDXR infection enhanced differentiation, reactive oxygen species (ROS), lipogenesis and PPARγ expression, and consequnently inhibited proliferation in SZ95 sebocytes. Flow cytometry showed that FDXR overexpression induced significant blockade of G2/M phase but had no effect on sub-G1 (apoptotic) sebocytes. Insulin-like growth factor-1 (IGF-1)-induced FDXR and PPARγ expression and lipogenesis were abolished by pretreatment with PI3K inhibitor LY294002. These results suggest that FDXR overexpression might promote differentiation and lipogenesis via ROS production and suppress proliferation via G2/S blockade in SZ95 sebocytes. IGF-1 could facilitate differentiation and lipogenesis through PI3K/Akt/FDXR pathway. FDXR could serve as a potential marker of advanced sebaceous differentiation, and its overexpression may be involved in the development of acne lesions.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ferredoxinas/farmacologia , Lipogênese/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos
3.
J Virol ; 87(18): 10037-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23843640

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a key sensor for recognizing nucleic acids derived from RNA viruses and triggers beta interferon (IFN-ß) production. Because of its important role in antiviral innate immunity, the activity of RIG-I must be tightly controlled. Here, we used yeast two-hybrid screening to identify a SEC14 family member, SEC14L1, as a RIG-I-associated negative regulator. Transfected SEC14L1 interacted with RIG-I, and endogenous SEC14L1 associated with RIG-I in a viral infection-inducible manner. Overexpression of SEC14L1 inhibited transcriptional activity of the IFN-ß promoter induced by RIG-I but not TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Knockdown of endogenous SEC14L1 in both HEK293T cells and HT1080 cells potentiated RIG-I and Sendai virus-triggered IFN-ß production as well as attenuated the replication of Newcastle disease virus. SEC14L1 interacted with the N-terminal domain of RIG-I (RIG-I caspase activation and recruitment domain [RIG-I-CARD]) and competed with VISA/MAVS/IPS-1/Cardif for RIG-I-CARD binding. Domain mapping further indicated that the PRELI-MSF1 and CRAL-TRIO domains but not the GOLD domain of SEC14L1 are required for interaction and inhibitory function. These findings suggest that SEC14L1 functions as a novel negative regulator of RIG-I-mediated antiviral signaling by preventing RIG-I interaction with the downstream effector.


Assuntos
Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/imunologia , Vírus da Doença de Newcastle/imunologia , RNA Viral/imunologia , Vírus Sendai/imunologia , Transdução de Sinais , Proteínas de Transporte/genética , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Regulação para Baixo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Viral/metabolismo , Receptores Imunológicos , Técnicas do Sistema de Duplo-Híbrido
4.
Sci Adv ; 8(35): eabo5506, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054358

RESUMO

The master circadian clock generates 24-hour rhythms to orchestrate daily behavior, even running freely under constant conditions. Traditionally, the master clock is considered self-sufficient in sustaining free-running timekeeping via its cell-autonomous molecular clocks and interneuronal communications within the circadian neural network. Here, we find a set of bona fide ultradian oscillators in the Drosophila brain that support free-running timekeeping, despite being located outside the master clock circuit and lacking clock gene expression. These extra-clock electrical oscillators (xCEOs) generate cell-autonomous ultradian bursts, pacing widespread burst firing and promoting rhythmic resting membrane potentials in clock neurons via parallel monosynaptic connections. Silencing xCEOs disrupts daily electrical rhythms in clock neurons and impairs cycling of neuropeptide pigment dispersing factor, leading to the loss of free-running locomotor rhythms. Together, we conclude that the master clock is not self-sufficient to sustain free-running behavior rhythms but requires additional endogenous inputs to the clock from the extra-clock ultradian brain oscillators.

5.
Nat Commun ; 9(1): 4247, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315165

RESUMO

Circadian rhythms are orchestrated by a master clock that emerges from a network of circadian pacemaker neurons. The master clock is synchronized to external light/dark cycles through photoentrainment, but the circuit mechanisms underlying visual photoentrainment remain largely unknown. Here, we report that Drosophila has eye-mediated photoentrainment via a parallel pacemaker neuron organization. Patch-clamp recordings of central circadian pacemaker neurons reveal that light excites most of them independently of one another. We also show that light-responding pacemaker neurons send their dendrites to a neuropil called accessary medulla (aMe), where they make monosynaptic connections with Hofbauer-Buchner eyelet photoreceptors and interneurons that transmit compound-eye signals. Laser ablation of aMe and eye removal both abolish light responses of circadian pacemaker neurons, revealing aMe as a hub to channel eye inputs to central circadian clock. Taken together, we demonstrate that the central clock receives eye inputs via hub-organized parallel circuits in Drosophila.


Assuntos
Ritmo Circadiano/fisiologia , Drosophila/citologia , Animais , Relógios Biológicos/fisiologia , Ritmo Circadiano/genética , Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Vias Visuais/fisiologia
6.
Nat Commun ; 8(1): 1357, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116083

RESUMO

Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.


Assuntos
Drosophila melanogaster/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Técnicas de Inativação de Genes , Masculino , Percepção Olfatória/fisiologia , Optogenética/métodos , Técnicas de Patch-Clamp , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA