Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Surg Endosc ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285042

RESUMO

BACKGROUND: Thyroid surgery has undergone significant transformation with the introduction of minimally invasive techniques, particularly robotic and endoscopic thyroidectomy. These advancements offer improved precision and faster recovery but also present unique challenges. This study aims to compare the learning curves, operational efficiencies, and patient outcomes of robotic versus endoscopic thyroidectomy. METHODS: A retrospective cohort study was conducted, analyzing 258 robotic (da Vinci) and 214 endoscopic thyroidectomy cases. Key metrics such as operation duration, drainage volume, lymph node dissection outcomes, and hypoparathyroidism incidence were assessed to understand surgical learning curves and efficiency. RESULTS: Robotic thyroidectomy showed a longer learning curve with initially longer operation times and higher drainage volumes but superior lymph node dissection outcomes. Both techniques were safe, with no permanent hypoparathyroidism or recurrent laryngeal nerve damage reported. The study delineated four distinct stages in the robotic and endoscopic surgery learning curve, each marked by specific improvements in proficiency. Endoscopic thyroidectomy displayed a shorter learning curve, leading to quicker operational efficiency gains. CONCLUSION: Robotic and endoscopic thyroidectomies are viable minimally invasive approaches, each with its learning curves and efficiency metrics. Despite initial challenges and a longer learning period for robotic surgery, its benefits in complex dissections may justify specialized training. Structured training programs tailored to each technique are crucial for improving outcomes and efficiency. Future research should focus on optimizing training protocols and increasing accessibility to these technologies, enhancing patient care in thyroid surgery.

2.
Chem Biodivers ; : e202401469, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145746

RESUMO

Pancreatobililary cancers are fatal solid tumors that pose a significant threat to human life. It is imperative to investigate novel small molecule active compounds for controlling these cancers. Heterocyclic compounds (e.g. gemcitabine) and multi-substituted alkenes (e.g. resveratrol) are commonly applied in tumor treatment. Researchers have proposed that the synthesis of new trisubstituted alkenes containing heteroaromatic rings by combining these two scaffolds may be a fresh strategy to develop new active molecules. In this study, we utilized alkenyl bromide and heteroaryl boronic acid as substrates, employing Suzuki coupling to generate a series of triarylethylenes featuring nitrogen, oxygen, and sulfur atoms. Through in vitro experiments, the results indicated that some compounds exhibited remarkable anti-tumor efficacy (e.g. IC50[3be, GBC-SD] = 0.13 µM and IC50[3be, PANC-1] = 0.27 µM). The results further demonstrated that the antitumor efficacy of these compounds was dependent on the heteroatom, π-system, skeleton-bonding site, and substituent type.

3.
Sheng Li Xue Bao ; 76(4): 587-596, 2024 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-39192791

RESUMO

Aldosterone-producing adenoma is a subtype of primary aldosteronism. Recent advancements in multi-omics research have led to significant progress in understanding primary aldosteronism at the genetic level. Among the various genes associated with the development of aldosterone-producing adenomas, the KCNJ5 (potassium inwardly rectifying channel, subfamily J, member 5) gene has received considerable attention due to its prevalence as the most common somatic mutation gene in primary aldosteronism. This paper aims to integrate the existing evidence on the involvement of KCNJ5 gene in the pathogenesis of aldosterone-producing adenomas, to enhance the understanding of the underlying mechanisms of aldosterone-producing adenomas from the perspective of genetics, and to provide novel insights for the clinical diagnosis and treatment of aldosterone-producing adenomas.


Assuntos
Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Aldosterona , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Hiperaldosteronismo , Humanos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Aldosterona/metabolismo , Aldosterona/biossíntese , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/metabolismo , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Adenoma/genética , Adenoma/metabolismo , Mutação
4.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3901-3911, 2024 Jul.
Artigo em Zh | MEDLINE | ID: mdl-39099364

RESUMO

The aim of this study was to investigate the potential mechanism by which cryptotanshinone(CTS) may exert its anti-myo-cardial ischemic effect through the regulation of macrophage polarization via the dendritic cell-associated C-type lectin 1(Dectin-1) signaling pathway. Male C57BL/6 mice, aged six weeks, were utilized to establish myocardial ischemia models and were subsequently divided into five groups: sham, model, CTS low-dose(21 mg·kg~(-1)·d~(-1)), CTS high-dose(84 mg·kg~(-1)·d~(-1)), and dapagliflozin(0.14 mg·kg~(-1)·d~(-1)). The cardiac function, serum enzyme levels, Dectin-1 expression, macrophage polarization, and neutrophil infiltration in the myocardial infarction area were assessed in each group. An in vitro model of M1-type macrophages was constructed using lipopolysaccharide/interfe-ron-γ(LPS/IFN-γ) stimulated RAW264.7 cells to investigate the impact of CTS on macrophage polarization and to examine alterations in key proteins within the Dectin-1 signaling pathway. In the CTS group, compared to the model group mice, there was a significant improvement in the cardiac function and myocardial injury, along with a notable increase in the ratio of M2/M1-type macrophages in the myocardial infarcted area and a decrease in neutrophil infiltration. Additionally, Dectin-1 exhibited low expression. The results of in vitro experiments demonstrated that CTS can decrease the expression of M1-type marker genes and increase the expression of M2-type marker genes. Besides, it can decrease the levels of Dectin-1 and the phosphorylation of its associated proteins, including spleen tyrosine kinase(Syk), protein kinase B(Akt), nuclear factor-kappaB p65(NF-κB p65), and extracellular signal-regulated protein kinases(ERK1/2). Additionally, CTS was found to enhance the phosphorylation of signal transducer and activator of transcription-6(STAT6). The above results suggest that CTS exerts its anti-myocardial ischemic injury effect by regulating macrophage polarization through the Dectin-1 signaling pathway.


Assuntos
Lectinas Tipo C , Macrófagos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica , Fenantrenos , Transdução de Sinais , Animais , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Fenantrenos/farmacologia , Humanos
5.
Am J Physiol Cell Physiol ; 325(5): C1252-C1266, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694287

RESUMO

Hydrogen sulfide (H2S) promotes microangiogenesis and revascularization after ischemia. Neovascularization starts with the destruction of intercellular junctions and is accompanied by various endothelial cell angiogenic behaviors. Follistatin-like 1 (FSTL1) is a cardiovascular-protective myokine that works against ischemic injury. The present study examined whether FSTL1 was involved in H2S-induced angiogenesis and explored the underlying molecular mechanism. We observed that H2S accelerated blood perfusion after ischemia in the mouse hindlimb ischemia model. Western blot analysis showed that H2S stabilized FSTL1 transcript and increased FSTL1 and Human antigen R (HuR) levels in skeletal muscle. RNA-interference HuR significantly inhibited the H2S-promoted increase in FSTL1 levels. Exogenous FSTL1 promoted the wound-healing migration of human umbilical vein endothelial cells (HUVECs) and increased monolayer endothelial barrier permeability. Immunostaining showed that FSTL1 increased interendothelial gap formation and decreased VE-Cadherin, Occludin, Connexin-43, and Claudin-5 expression. In addition, FSTL1 significantly increased the phosphorylation of Src and VEGFR2. However, the Src inhibitor, not the VEGFR2 inhibitor, could block FSTL1-induced effects in angiogenesis. In conclusion, we demonstrated that H2S could upregulate the expression of FSTL1 by increasing the HuR levels in skeletal muscle, and paracrine FSTL1 could initiate angiogenesis by opening intercellular junctions via the Src signaling pathway.NEW & NOTEWORTHY The myocyte-derived paracrine protein FSTL1 acts on vascular endothelial cells and initiates the process of angiogenesis by opening the intercellular junction via activating Src kinase. H2S can significantly upregulate FSTL1 protein levels in skeletal muscles by increasing HuR expression.

6.
Chem Rec ; 23(12): e202300293, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010365

RESUMO

Cancer stands as a serious malady, posing substantial risks to human well-being and survival. This underscores the paramount necessity to explore and investigate novel antitumor medications. Nitrogen-containing compounds, especially those derived from natural sources, form a highly significant category of antitumor agents. Among these, antitumor agents with six-membered aromatic nitrogen heterocycles have consistently attracted the attention of chemists and pharmacologists. Accordingly, we present a comprehensive summary of synthetic strategies and clinical implications of these compounds in this review. This entails an in-depth analysis of synthesis pathways for pyridine, quinoline, pyrimidine, and quinazoline. Additionally, we explore the historical progression, targets, mechanisms of action, and clinical effectiveness of small molecule inhibitors possessing these structural features.


Assuntos
Antineoplásicos , Compostos Heterocíclicos , Humanos , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Nitrogênio/química , Antineoplásicos/farmacologia , Antineoplásicos/química
7.
Org Biomol Chem ; 20(27): 5383-5386, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35748786

RESUMO

A palladium-catalyzed synthesis of tetrasubstituted allenes from aryl bromides and aryl diazoacetates is developed. This transformation proceeded via an aryl to alkenyl 1,4-palladium migration/carbene insertion/ß-H elimination sequence under mild reaction conditions.


Assuntos
Alcadienos , Paládio , Catálise , Metano/análogos & derivados
8.
Mol Genet Genomics ; 296(1): 179-192, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130909

RESUMO

Ethylene response factors (ERFs) widely exist in plants and have been reported to be an important regulator of plant abiotic stress. Celery, a common economic vegetable of Apiaceae, contains lots of ERF transcription factors (TFs) with various functions. AP2/ERF TFs play positive or negative roles in plant growth and stress response. Here, AgERF8, a gene encoding EAR-type AP2/ERF TF, was identified. The AgERF8 mRNA accumulated in response to both abscisic acid (ABA) signaling and salt treatment. AgERF8 was proving to be a nucleus-located protein and could bind to GCC-box. The overexpression of AgERF8 in Arabidopsis repressed the transcription of downstream genes, AtBGL and AtBCH. Arabidopsis overexpressing AgERF8 gene showed inhibited root growth under ABA and NaCl treatments. AgERF8 transgenic lines showed low tolerance to ABA and salt stress than wild-type plants. Low increment in SOD and POD activities, increased accumulation of MDA, and significantly decreased plant fresh weights and chlorophyll levels were detected in AgERF8 hosting lines after treated with ABA and NaCl. Furthermore, the overexpression of AgERF8 also inhibited the levels of ascorbic acid and antioxidant-related genes (AtCAT1, AtSOD1, AtPOD, AtSOS1, AtAPX1, and AtP5CS1) expression in transgenic Arabidopsis. This finding indicated that AgERF8 negatively affected the resistance of transgenic Arabidopsis to ABA and salt stress through regulating downstream genes expression and relevant physiological changes. It will provide a potential sight to further understand the functions of ERF TFs in celery.


Assuntos
Ácido Abscísico/farmacologia , Apium/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Sequência de Aminoácidos , Apium/genética , Apium/crescimento & desenvolvimento , Apium/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Clonagem Molecular , Secas , Etilenos/metabolismo , Etilenos/farmacologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
9.
Am J Physiol Cell Physiol ; 318(5): C857-C869, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186933

RESUMO

Diabetes (especially Type II) is one of the primary threats to cardiovascular health. Wound healing defects and vascular dysfunction are common in diabetic patients, and the primary cause of deterioration is sustained high plasma glucose. microRNA, a noncoding RNA, has regulatory functions that are critical to maintaining homeostasis. MicroRNA (miR)-126-3p is a potential diabetes biomarker and a proangiogenic factor, and its plasma level decreases in diabetic patients. Previous studies have revealed the proangiogenic character of the gasotransmitter hydrogen sulfide (H2S). However, little is known about the relationship between H2S and miR-126-3p when the extracellular glucose level is high, let alone their influences on deteriorated endothelial cell migration, a key component of angiogenesis, which is crucial for wound healing. Human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33.3 mmol/L) or normal glucose (5.5 mmol/L) for 48 h. Affymetrix miRNA profiling and real-time PCR were used to validate the miRNA expression. An H2S probe (HSip-1) was used to detect endogenous H2S. Scratch wound-healing assays were used to evaluate HUVEC migration. The protein levels were quantified by Western blot. Both exogenous and endogenous H2S could upregulate the miR-126-3p levels in HUVECs or muscle tissue. High glucose decreased the H2S level and the protein expression of the H2S-producing enzyme cystathionine γ-lyase (CSE) in HUVECs; however, the DNA methyltransferase 1 (DNMT1) protein level was upregulated. CSE overexpression not only increased the miR-126-3p level by decreasing the DNMT1 protein level but also rescued the deteriorated cell migration in HUVECs treated with high glucose. DNMT1 overexpression decreased the miR-126-3p level and inhibited the migration of HUVECs, whereas silencing DNMT1 improved cell migration. High glucose decreased the endogenous H2S and miR-126-3p levels and increased the DNMT1 expression, thus inducing the migration dysfunction of HUVECs. Treatment with exogenous H2S or the overexpression of the endogenously produced enzyme CSE would rescue this migration dysfunction through H2S-DNMT1-miR-126-3p.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Sulfeto de Hidrogênio/farmacologia , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Movimento Celular/efeitos dos fármacos , Cistationina gama-Liase/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/metabolismo , Camundongos , Neovascularização Fisiológica/genética , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
10.
J Pharmacol Exp Ther ; 373(3): 463-475, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32238453

RESUMO

Leonurine (LEO) is a bioactive small molecular compound that has protective effects on the cardiovascular system and prevents the early progression of atherosclerosis; however, it is not clear whether LEO is effective for plaque stability. A novel mouse atherosclerosis model involving tandem stenosis (TS) of the right carotid artery combined with western diet (WD) feeding was used. Apolipoprotein E gene-deficient mice were fed with a WD and received LEO administration daily for 13 weeks. TS was introduced 6 weeks after the onset of experiments. We found that LEO enhanced plaque stability by increasing fibrous cap thickness and collagen content while decreasing the population of CD68-positive cells. Enhanced plaque stability by LEO was associated with the nitric oxide synthase (NOS)-nitric oxide (NO) system. LEO restored the balance between endothelial NOS(E)- and inducible NOS(iNOS)-derived NO production; suppressed the NF-κB signaling pathway; reduced the level of the inflammatory infiltration in plaque, including cytokine interleukin 6; and downregulated the expression of adhesion molecules. These findings support the distinct role of LEO in plaque stabilization. In vitro studies with oxidized low-density lipoprotein-challenged human umbilical vein endothelial cells revealed that LEO balanced NO production and inhibited NF-κB/P65 nuclear translocation, thus mitigating inflammation. In conclusion, the restored balance of the NOS-NO system and mitigated inflammation contribute to the plaque-stabilizing effect of LEO. SIGNIFICANCE STATEMENT: LEO restored the balance between endothelial NOS and inducible NOS in NO production and inhibited excessive inflammation in atherosclerotic "unstable" and rupture-prone plaques in apolipoprotein E gene-deficient mice. The protective effect of LEO for stabilizing atherosclerotic plaques was due to improved collagen content, increased fibrous cap thickness, and decreased accumulation of macrophages/foam cells. So far, LEO has passed the safety and feasibility test of phase I clinical trial.


Assuntos
Aterosclerose/tratamento farmacológico , Ácido Gálico/análogos & derivados , Inflamação/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Animais , Aterosclerose/metabolismo , Linhagem Celular , Ácido Gálico/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Crit Rev Biotechnol ; 40(6): 750-776, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32522044

RESUMO

In the whole life process, many factors including external and internal factors affect plant growth and development. The morphogenesis, growth, and development of plants are controlled by genetic elements and are influenced by environmental stress. Transcription factors contain one or more specific DNA-binding domains, which are essential in the whole life cycle of higher plants. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) transcription factors are a large group of factors that are mainly found in plants. The transcription factors of this family serve as important regulators in many biological and physiological processes, such as plant morphogenesis, responsive mechanisms to various stresses, hormone signal transduction, and metabolite regulation. In this review, we summarized the advances in identification, classification, function, regulatory mechanisms, and the evolution of AP2/ERF transcription factors in plants. AP2/ERF family factors are mainly classified into four major subfamilies: DREB (Dehydration Responsive Element-Binding), ERF (Ethylene-Responsive-Element-Binding protein), AP2 (APETALA2) and RAV (Related to ABI3/VP), and Soloists (few unclassified factors). The review summarized the reports about multiple regulatory functions of AP2/ERF transcription factors in plants. In addition to growth regulation and stress responses, the regulatory functions of AP2/ERF in plant metabolite biosynthesis have been described. We also discussed the roles of AP2/ERF transcription factors in different phytohormone-mediated signaling pathways in plants. Genomic-wide analysis indicated that AP2/ERF transcription factors were highly conserved during plant evolution. Some public databases containing the information of AP2/ERF have been introduced. The studies of AP2/ERF factors will provide important bases for plant regulatory mechanisms and molecular breeding.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Plantas , Plantas , Fator de Transcrição AP-2 , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais/genética , Plantas/genética , Plantas/metabolismo
12.
J Anim Ecol ; 89(8): 1851-1859, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32329064

RESUMO

In sexually reproducing animals, the process of mate choice by females is often mixed with the process of male-male competition. Current models of female male choice focus mainly on how females identify the higher quality of males, but neglect the effect of male-male competition on the mate choice of females. Therefore, it remains controversial what is the relative importance of two processes in forming a social bond. We propose a new 'trial marriage' model for females' mate choice. The model assumes that females unconditionally accept any male they first encounter as their mating partner, and then conditionally switch mates to a new male of higher quality than their current partner when male-male competition occurs. This model was tested in the green weevil Hypomeces squamosus by exploring how females switched mates when males' mating interference was experimentally induced. The likelihood that females switched mates, as well as their conditional acceptance criteria of a new mate, was both raised with the intensity of males' mating interference that was manipulated in an enhanced encounter rate experiment, and in male introduction or stepwise removal experiments. These experimental findings confirm that a 'trial marriage' strategy occurs during females' mate choice. Compared with other strategies, it is more beneficial for females to choose a better mate without paying the costs of identifying males as suggested by the 'trial marriage' strategy. More importantly, using the current partner quality as the conditional acceptance threshold of new mates, females can choose better males in future encounters with potential mates. In the green weevils, males' preference for larger females and the higher possibility of the largest male winning an interference are mixed together when males' mating interference reaches a higher intensity. Therefore, the consequence of a male interference will determine which male could be chosen by a female. Under this condition, conditional acceptance of the winner becomes the most beneficial strategy of females in choosing their mates. We thus suggest that the 'trial marriage' strategy would be more efficient when males' mating interference becomes the determinant factor of females' mate choice.


Assuntos
Casamento , Preferência de Acasalamento Animal , Animais , Feminino , Masculino , Reprodução , Comportamento Sexual Animal
13.
Planta ; 250(4): 1265-1280, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31236696

RESUMO

MAIN CONCLUSION: This study analyzed the AP2/ERF transcription factors in celery and showed that two dehydration-responsive-element-binding (DREB) transcription factors, AgDREB1 and AgDREB2, contribute to the enhanced resistance to abiotic stress in transgenic Arabidopsis. The AP2/ERF family is a large family of transcription factors (TFs) in higher plants that plays a central role in plant growth, development, and response to environmental stress. Here, 209 AP2/ERF family members were identified in celery based on genomic and transcriptomic data. The TFs were classified into four subfamilies (i.e., DREB, ERF, RAV, and AP2) and Soloist. Evolution analysis indicated that the AP2/ERF TFs are ancient molecules and have expanded in the long-term evolution process of plants and whole-genome duplication events. AgAP2/ERF proteins may be associated with multiple biological processes as predicted by the interaction network. The expression profiles and sequence alignment analysis of the TFs in the DREB-A1 group showed that eight genes could be divided into four branches. Two genes, AgDREB1 and AgDREB2, from the DREB-A1 group were selected for further analysis. Subcellular localization assay suggested that the two proteins are nuclear proteins. Yeast one hybrid assay demonstrated that the two proteins could bind to the dehydration-responsive element (DRE). The overexpression of AgDREB1 and AgDREB2 in Arabidopsis induced the increased tolerance to cold treatment and the up-regulation of the COR genes expression. AgDREB1 and AgDREB2 might function as transcriptional activators in regulating the downstream genes by binding to corresponding DRE to enhance stress tolerance in celery.


Assuntos
Apium/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Apium/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Temperatura Baixa , Evolução Molecular , Genômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética
14.
Biotechnol Bioeng ; 116(5): 985-993, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636319

RESUMO

The cell-specific growth rate (µ) is a critical process parameter for antibody production processes performed by animal cell cultures, as it describes the cell growth and reflects the cell physiological state. When there are changes in these parameters, which are indicated by variations of µ, the synthesis and the quality of antibodies are often affected. Therefore, it is essential to monitor and control the variations of µto assure the antibody production and achieve high product quality. In this study, a novel approach for on-line estimation of µ was developed based on the process analytical technology initiative by using an in situ dielectric spectroscopy. Critical moments, such as significant µ decreases, were successfully detected by this method, in association with changes in cell physiology as well as with an accumulation of nonglycosylated antibodies. Thus, this method was used to perform medium renewals at the appropriate time points, maintaining the values of µ close to its maximum. Using this method, we demonstrated that the physiological state of cells remained stable, the quantity and the glycosylation quality of antibodies were assured at the same time, leading to better process performances compared with the reference feed-harvest cell cultures carried out by using off-line nutrient measurements.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura de Células , Imunoglobulina G/biossíntese , Animais , Reatores Biológicos , Células CHO , Cricetulus
15.
Angew Chem Int Ed Engl ; 58(46): 16543-16547, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493306

RESUMO

A sequential cross-coupling/annulation of ortho-vinyl bromobenzenes with aromatic bromides was realized, providing a direct and modular approach to access polycyclic aromatic compounds. A vinyl-coordinated palladacycle was proposed as the key intermediate for this sequential process. Excellent chemoselectivity and regioselectivity were observed in this transformation. The practicability of this method is highlighted by its broad substrate scope, excellent functional group tolerance, and rich transformations associated with the obtained products.

16.
Angew Chem Int Ed Engl ; 58(11): 3387-3391, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30644152

RESUMO

The asymmetric rhodium-catalyzed alkenylation of enones and imines with arylboronic acids has been developed. A highly controllable aryl to vinyl 1,4-rhodium migration is the key step. Stereodefined vinyl moieties were installed in excellent enantioselectivies for most examined examples. DFT calculations reveal that the driving force of this rhodium migration is a kinetically favored process.

17.
Mol Genet Genomics ; 293(4): 861-871, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29497811

RESUMO

Carrot (Daucus carota L.) is one of the most economically important root vegetables in the world, providing numerous nutrients for human health. China is the largest country of carrot production in the world, and 'Kurodagosun' has been a major carrot variety in China. Carrot material used in this study was the inbred line 'DC-27', which was derived by forced selfing from 'Kurodagosun'. To understand the genetic system and plant-specific genes of 'Kurodagosun', we report the draft genome sequence of carrot 'DC-27' assembled using a combination of Roche454 and HiSeq 2000 sequencing technologies to achieve 32-fold genome coverage. A total of 31,891 predicted genes were identified. These assembled sequences provide candidate genes involved in biological processes including stress response and carotenoid biosynthesis. Genomic sequences corresponding to 371.6 Mb was less than 473 Mb, which is the estimated genome size. The availability of a draft sequence of the 'DC-27' genome advances knowledge on the biological research and breeding of carrot, as well as other Apiaceae plants. The 'DC-27' genome sequence data also provide a new resource to explore the evolution of other higher plants.


Assuntos
Daucus carota/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Carotenoides/biossíntese , Carotenoides/genética , China , Daucus carota/metabolismo , Japão , Estresse Fisiológico/genética
18.
Crit Rev Biotechnol ; 38(2): 172-183, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28423952

RESUMO

Celery (Apium graveolens L.), one of the most important vegetables in Apiaceae family, is cultivated worldwide and utilized in food and cosmetic industries because it is an excellent source of vitamins, phenolic compounds, volatile oils and other nutrients. Celery extracts possess various medicinal properties, such as antibacterial, anti-inflammatory and lowering blood glucose and serum lipid levels. With the rapid advancements in molecular biology and sequencing technology, studies on celery have been performed. Numerous molecular markers and regulatory genes have been discovered and applied to improve celery. Research advances, including genetic breeding, genomics research, function genes and chemical composition, regarding celery are reviewed in this paper. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on celery, an important Apiaceae vegetable crop.


Assuntos
Apium , Verduras , Apium/química , Apium/genética , Genes de Plantas , Genômica , Compostos Fitoquímicos , Melhoramento Vegetal , Pesquisa , Verduras/química , Verduras/genética
19.
Support Care Cancer ; 26(7): 2303-2312, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29404843

RESUMO

PURPOSE: Positive expectations about personal abilities and future outcomes are important in shaping human behavior and emotion, which may influence the psychological adjustment in cancer patients. We aimed to assess two basic kinds of perceived stress in Chinese cancer patients and to investigate their associations with demographic-clinical characteristics and positive expectations. METHODS: A multi-center, cross-sectional study was conducted in consecutive cervical, kidney, and bladder cancer inpatients from three general hospitals in Liaoning province from February 2013 to August 2014. A total of 790 patients eligible for this study completed questionnaires on demographic-clinical variables, optimism, general self-efficacy, perceived global, and cancer-related stress anonymously. Hierarchical regression analyses were conducted to examine the relationships between optimism, general self-efficacy, and perceived stress, after controlling for possible covariates. RESULTS: Mean score of perceived global stress was 17.85 (SD 4.43). Mean score of perceived cancer-related stress was 37.15 (SD 12.66); 38.1% of the sample scored 44 and above, 20.1% scored 50 and above. Education, physical activity, cancer stage, and time since diagnosis were significantly associated with perceived stress. Optimism and general self-efficacy accounted for an additional variance in perceived global (14.9%) and cancer-related stress (16.9%), and both of them were independent and protective variables of perceived stress. CONCLUSIONS: This study recognized cancer patients at risk for high levels of perceived stress and extended the understanding of the association between positive expectations and perceived global and cancer-related stress. Enhancing or maintaining optimism and general self-efficacy might be potential targets for future psychosocial interventions aimed at relieving perceived stress in cancer patients.


Assuntos
Povo Asiático/psicologia , Neoplasias Renais/psicologia , Qualidade de Vida/psicologia , Neoplasias da Bexiga Urinária/psicologia , Neoplasias do Colo do Útero/psicologia , Adolescente , Adulto , Idoso , Estudos Transversais , Demografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Angew Chem Int Ed Engl ; 57(20): 5871-5875, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29573527

RESUMO

An efficient aryl to vinyl 1,4-palladium migration/Heck sequence was developed for the stereoselective synthesis of 1,3-dienes. High stereoselectivity was observed not only for 1,3-dienes bearing two similar aryl groups at terminal positions, but also for those with configurations shown to be unfavorable with previous methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA