Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Inorg Chem ; 58(12): 8208-8214, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31185548

RESUMO

The rational design of efficient and durable oxygen evolution reaction (OER) is important for energy conversion and storage devices. Here, we develop a two-step calcination method to prepare cobalt nanoparticles uniformly dispersed on perovskite oxide nanofibers and to tune oxygen vacancies in perovskite LaMn0.75Co0.25O3-δ nanofibers. The obtained product shows enhanced activity toward OER. In particular, the oxygen deficient LMCO-2 catalyst prepared by a two-step calcination shows excellent OER performance that is 27.5 times that of the LMO catalyst and is comparable to that of the commercial RuO2 catalyst. It also demonstates good stability because of its novel structure, abundant oxygen vacancies, and larger number of metal ions with a high oxidation state. As an air electrode for a flexible zinc-air battery, the cell with the LMCO-2 catalyst delivers a higher power density of 35 mW cm-2 and excellent cycling stability for 70 h. Moreover, the cell exhibits excellent flexibility under different bending conditions.

2.
Angew Chem Int Ed Engl ; 58(4): 1094-1099, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30447094

RESUMO

The uncontrolled growth of Li dendrites upon cycling might result in low coulombic efficiency and severe safety hazards. Herein, a lithiophilic binary lithium-aluminum alloy layer, which was generated through an in situ electrochemical process, was utilized to guide the uniform metallic Li nucleation and growth, free from the formation of dendrites. Moreover, the formed LiAl alloy layer can function as a Li reservoir to compensate the irreversible Li loss, enabling long-term stability. The protected Li electrode shows superior cycling over 1700 h in a Li|Li symmetric cell.

3.
Angew Chem Int Ed Engl ; 57(6): 1505-1509, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29239079

RESUMO

Lithium (Li) metal is a promising anode material for high-energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self-adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA-Li/LiPAA-Li symmetrical cell. The innovative strategy of self-adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes.

4.
J Am Chem Soc ; 138(49): 15825-15828, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960330

RESUMO

High-energy rechargeable Li metal batteries are hindered by dendrite growth due to the use of a liquid electrolyte. Solid polymer electrolytes, as promising candidates to solve the above issue, are expected to own high Li ion conductivity without sacrificing mechanical strength, which is still a big challenge to realize. In this study, a bifunctional solid polymer electrolyte exactly having these two merits is proposed with an interpenetrating network of poly(ether-acrylate) (ipn-PEA) and realized via photopolymerization of ion-conductive poly(ethylene oxide) and branched acrylate. The ipn-PEA electrolyte with facile processing capability integrates high mechanical strength (ca. 12 GPa) with high room-temperature ionic conductance (0.22 mS cm-1), and significantly promotes uniform Li plating/stripping. Li metal full cells assembled with ipn-PEA electrolyte and cathodes within 4.5 V vs Li+/Li operate effectively at a rate of 5 C and cycle stably at a rate of 1 C at room temperature. Because of its fabrication simplicity and compelling characteristics, the bifunctional ipn-PEA electrolyte reshapes the feasibility of room-temperature solid-state Li metal batteries.

5.
Artigo em Inglês | MEDLINE | ID: mdl-21961696

RESUMO

The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample magnetometer (VSM), and high resolution transmission electron microscope (HRTEM). The surface area, pore volume and pore size of synthesized PAC was 1521.8 m(2)g(-1), 0.96 cm(3)g(-1), 2.54 nm, respectively. Different kinetic models: the pseudo-first-order model, the pseudo-second-order model, and three adsorption isotherms--Langmuir, Freundlich and Temkin--were applied to study the sorption kinetics and isothermal behavior of PFOS onto the surface of an as-prepared adsorbent. The rate constant using the pseudo-second-order model for removal of 150 ppm PFOS was estimated as 8.82×10(-5) and 1.64×10(-4) for PAC and 40% Ni/PAC, respectively. Our results demonstrated that the composite adsorbents exhibited a clear magnetic hysteretic behavior, indicating the potential practical application in magnetic separation of adsorbents from aqueous solution phase as well.


Assuntos
Ácidos Alcanossulfônicos/isolamento & purificação , Carvão Vegetal/química , Carvão Vegetal/síntese química , Fluorocarbonos/isolamento & purificação , Magnetismo , Níquel/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Cinética , Modelos Químicos , Poluentes Químicos da Água/química , Difração de Raios X
6.
Nanoscale Adv ; 2(12): 5496-5503, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133878

RESUMO

Two-dimensional (2D) materials have attracted increased attention as advanced electrodes in electrochemical energy storage owing to their thin nature and large specific surface area. However, limited interlayer spacing confines the mass and ion transport within the layers, resulting in poor rate performance. Considerable efforts have been made to deal with this intrinsic problem of pristine 2D materials. Among them, interlayer engineering through pillared designs offers abundant electrochemical active sites and promotes ion diffusion. Synergetic effects between incorporated species and 2D hosts offer much better conductivity and surface modification. As a result, 2D materials with advanced pillared designs demonstrate great enhancement of specific capacity/capacitance and rate performance. Herein, we summarize the recent progress of pillared 2D materials in relation to the intercalated species. Moreover, we highlight their typical applications in lithium-ion storage and beyond to provide some insights on future trends towards this research area.

7.
Nanoscale Adv ; 2(12): 5555-5566, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133877

RESUMO

The electrochemical water splitting process including the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is considered as one of the most promising methods for high-purity hydrogen production. Ni-Fe based compounds, especially Ni-Fe layered double hydroxide (LDH), have become highly efficient electrocatalysts to expedite the above reactions. During the last decade, great progress has been witnessed in the development of Ni-Fe based electrocatalysts. Diverse regulatory strategies such as morphology modulation, composition control, and defect engineering have been employed to optimize their electrochemical performances for water splitting. In addition, the family of Ni-Fe based compounds has been expanded from LDHs to alloys, sulfides, phosphides and so forth. Deep experimental investigations and theoretical studies have also been carried out to reveal the intrinsic origin of the superior electrocatalytic performances. In this review, we summarise the recent development of Ni-Fe based compounds for electrochemical water splitting with high efficiency. Special focus has been placed on the design principle and synthetic strategies of Ni-Fe based compounds. In the end, remaining challenges and future research directions are briefly discussed.

8.
Sci Bull (Beijing) ; 65(5): 359-366, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659226

RESUMO

Recently, the rational design of non-precious metal electrocatalysts for highly efficient hydrogen evolution reaction (HER) in alkaline media has received considerable interests in sustainable and renewable energy researches. Herein, vertically aligned and interconnected NiS2/CoS2/MoS2 nanosheet arrays on Ni foam were prepared by a two-step procedure that conducted by the hydrothermal synthesis of Ni-Co molybdate nanosheet array as the precursor and followed by the vapor phase sulfurization to achieve in situ conversion. Basing on the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations, it can be found that the honeycomb-like structure of the Ni-Co molybdate nanosheet array was well preserved after the sulfurization process. The high-resolution TEM (HRTEM) characterization reveals that the NiS2/CoS2/MoS2 nanosheet array provided abundant well-exposed active edge sites and multiple heterointerfaces towards enhanced alkaline HER performance. Electrochemical studies demonstrated that the ultrathin NiS2/CoS2/MoS2 nanosheets exhibited excellent HER performance with an overpotential of 112 mV at 10 mA cm-2 and a smaller Tafel slope of 59 mV dec-1 in comparison with NiS2/MoS2 (155 mV and 89 mV dec-1) and CoS2/MoS2 (124 mV and 75 mV dec-1) samples by taking the advantage of the well-exposed multiple heterointerfaces. This work presents a facile and reliable synthetic strategy for the rational design of highly efficient electrocatalysts for the HER in alkaline solution based on non-precious metal sulfide nanocomposite.

9.
Nanoscale ; 11(2): 495-503, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30543224

RESUMO

The development of flexible electronics has extended the limit of the intelligent devices, which are highly sensitive, soft and capable of sustaining arbitrary deformation. Here, we report a liquid-polymer tubular triboelectric nanogenerator (L-P TENG) that is filled with liquid for a shape-adaptive sensor in various working modes. The L-P TENG is based on liquid-solid contact electrification with the use of displacement current and excited by the shape change of the tubular structure. The high softness of the device makes it possible to be twisted to any curve and bear extreme strain. It can be used to detect a slight difference in pressure from touch, pressing and stretching and is suitable for a wide-range force recognition with high sensitivity. The independent and multifunctional properties of the L-P TENG extend the potential applications through combinations. Such assembled units with crossings can sense the approaching object. This study provides a new direction for flexible electromechanical sensing and has potential applications in self-powered sensors, wearable electronics, smart human-machine interaction and auxiliary motion correction.

10.
ACS Appl Mater Interfaces ; 11(1): 802-810, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525402

RESUMO

Lithium metal batteries (LMBs) are prominent among next-generation energy-storage systems because of their high energy density. Unfortunately, the commercial application of LMBs is hindered by the dendrite growth issue during the charging process. Herein, we report that the triboelectric nanogenerator (TENG)-based pulse output with a novel waveform and frequency has restrained the formation of dendrites in LMBs. The waveform and operation frequency of TENG can be regulated by TENG-designed and smart power management circuits. By regulating the waveform and frequency of the TENG-based pulse output, the pulse duration becomes shorter than the lithium dendrite formation time at any current of pulse waveform, and lithium ions can replenish in the entire electrode surface during rest periods, eliminating concentration polarization. Therefore, the optimized TENG-based charging strategy can improve the Coulombic efficiency of lithium plating/stripping and realize homogeneous lithium plating in LMBs. This TENG-based charging technology provides an innovative strategy to address the Li dendrite growth issues in LMBs, and accelerates the application of TENG-based energy collection systems.

11.
J Hazard Mater ; 347: 25-30, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29288916

RESUMO

In recent years, people pay more attention to the protection against chemical warfare agents, due to the increase in the probability of usage of these chemical warfare agents in wars or terrorist attacks. In this work, MgO nanoparticles were in-situ growth on the surface of poly(m-phenylene Isophthalamide) (PMIA) forming a flexible and breathable fabric for the detoxification of mustard gas surrogate. The as-prepared nanofibrous membrane possesses a "flower-like" structure of which endows not only increase the specific surface area of the composite but also prevent the agglomeration of the MgO nanoparticles. The detoxification ability of the PMIA@MgO nanofibrous fabric was demonstrated by gas chromatography-mass spectrometer (GC-MS). It is found that after 20 h of reaction time, 70.56% of the mustard gas surrogate have been decomposed.

12.
ACS Appl Mater Interfaces ; 10(10): 8676-8684, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29446611

RESUMO

The triboelectric nanogenerator (TENG) has been used to store its generated energy into lithium-ion batteries (LIBs); however, the influences of its pulse current and high voltage on LIB polarization and dynamic behaviors have not been investigated yet. In this paper, it is found that LIBs based on the phase transition reaction of the lithium storage mechanism [LiFePO4 (LFP) and Li4Ti5O12 (LTO) electrodes] are more suitable for charging by TENGs. Thus, the enhanced cycling capacity, Coulombic efficiency (nearly 100% for LTO electrode), and energy storage efficiency (85.3% for the LFP-LTO electrode) are successfully achieved. Moreover, the pulse current has a positive effect on the increase of the Li-ion extraction, reducing the charge-transfer resistance ( Rct) for all studied electrodes as well (LFP, LiNi0.6Co0.2Mn0.2O2, LTO, and graphite). The excellent cyclability, high Coulombic, and energy storage efficiencies demonstrated the availability of storing pulsed energy generated by TENGs. This research has provided a promising analysis to obtain an enhanced charging methodology, which provides significant guidance for the scientific research of the LIBs.

13.
Adv Sci (Weinh) ; 5(9): 1800559, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250798

RESUMO

Lithium metal batteries show great potential in energy storage because of their high energy density. Nevertheless, building a stable solid electrolyte interphase (SEI) and restraining the dendrite growth are difficult to realize with traditional liquid electrolytes. Solid and gel electrolytes are considered promising candidates to restrain the dendrites growth, while they are still limited by low ionic conductivity and incompatible interphases. Herein, a dual-salt (LiTFSI-LiPF6) gel polymer electrolyte (GPE) with 3D cross-linked polymer network is designed to address these issues. By introducing a dual salt in 3D structure fabricated using an in situ polymerization method, the 3D-GPE exhibits a high ionic conductivity (0.56 mS cm-1 at room temperature) and builds a robust and conductive SEI on the lithium metal surface. Consequently, the Li metal batteries using 3D-GPE can markedly reduce the dendrite growth and achieve 87.93% capacity retention after cycling for 300 cycles. This work demonstrates a promising method to design electrolytes for lithium metal batteries.

14.
ACS Appl Mater Interfaces ; 10(30): 25683-25688, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975509

RESUMO

Core-shell-structured BaTiO3-poly( tert-butyl acrylate) (P tBA) nanoparticles are successfully prepared by in situ atom transfer radical polymerization of tert-butyl acrylate ( tBA) on BaTiO3 nanoparticle surface. The thickness of the P tBA shell layer could be controlled by adjusting the feed ratio of tBA to BaTiO3. The BaTiO3-P tBA nanoparticles are introduced into poly(vinylidene fluoride) (PVDF) matrix to form a BaTiO3-P tBA/PVDF nanocomposite. The nanocomposites keep the flexibility of the PVDF matrix with enhanced dielectric constant (∼15@100 Hz) because of the high permittivity of inorganic particles and the ester functional groups in the P tBA. Furthermore, the BaTiO3-P tBA/PVDF nanocomposites demonstrate the inherent small dielectric loss of the PVDF matrix in the tested frequency range. The high electric field dielectric constant of the nanocomposite film was investigated by polarization hysteresis loops. The high electric field effective dielectric constant of the nanocomposite is 26.5 at 150 MV/m. The output current density of the nanocomposite-based triboelectric nanogenerator (TENG) is 2.1 µA/cm2, which is above 2.5 times higher than the corresponding pure PVDF-based TENG.

15.
Adv Sci (Weinh) ; 5(4): 1700881, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721430

RESUMO

Private and security information for personal identification requires an encrypted tool to extend communication channels between human and machine through a convenient and secure method. Here, a triboelectric-based transparent secret code (TSC) that enables self-powered sensing and information identification simultaneously in a rapid process method is reported. The transparent and hydrophobic TSC can be conformed to any cambered surface due to its high flexibility, which extends the application scenarios greatly. Independent of the power source, the TSC can induce obvious electric signals only by surface contact. This TSC is velocity-dependent and capable of achieving a peak voltage of ≈4 V at a resistance load of 10 MΩ and a sliding speed of 0.1 m s-1, according to a 2 mm × 20 mm rectangular stripe. The fabricated TSC can maintain its performance after reciprocating rolling for about 5000 times. The applications of TSC as a self-powered code device are demonstrated, and the ordered signals can be recognized through the height of the electric peaks, which can be further transferred into specific information by the processing program. The designed TSC has great potential in personal identification, commodity circulation, valuables management, and security defense applications.

16.
Adv Sci (Weinh) ; 4(2): 1600400, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28251057

RESUMO

Hybrid electrolyte of ionic liquid and ethers is used to passivate the surface of Li metal surface via modification of the as-formed solid electrolyte interphase with N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide (Py13TFSI), thereby reducing the side reactions between the Li metal and electrolyte, leading to remarkably suppressed Li dendrite growth and mitigating Li metal corrosion.

17.
Adv Sci (Weinh) ; 4(3): 1600445, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28331792

RESUMO

Owning to their very high theoretical capacity, lithium metal anodes are expected to fuel the extensive practical applications in portable electronics and electric vehicles. However, unstable solid electrolyte interphase and lithium dendrite growth during lithium plating/stripping induce poor safety, low Coulombic efficiency, and short span life of lithium metal batteries. Lately, varies of micro/nanostructured lithium metal anodes are proposed to address these issues in lithium metal batteries. With the unique surface, pore, and connecting structures of different nanomaterials, lithium plating/stripping processes have been regulated. Thus the electrochemical properties and lithium morphologies have been significantly improved. These micro/nanostructured lithium metal anodes shed new light on the future applications for lithium metal batteries.

18.
Adv Mater ; 29(29)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585339

RESUMO

The Li metal anode has long been considered as one of the most ideal anodes due to its high energy density. However, safety concerns, low efficiency, and huge volume change are severe hurdles to the practical application of Li metal anodes, especially in the case of high areal capacity. Here it is shown that that graphitized carbon fibers (GCF) electrode can serve as a multifunctional 3D current collector to enhance the Li storage capacity. The GCF electrode can store a huge amount of Li via intercalation and electrodeposition reactions. The as-obtained anode can deliver an areal capacity as high as 8 mA h cm-2 and exhibits no obvious dendritic formation. In addition, the enlarged surface area and porous framework of the GCF electrode result in lower local current density and mitigate high volume change during cycling. Thus, the Li composite anode displays low voltage hysteresis, high plating/stripping efficiency, and long lifespan. The multifunctional 3D current collector promisingly provides a new strategy for promoting the cycling lifespan of high areal capacity Li anodes.

19.
Adv Mater ; 29(40)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28891207

RESUMO

Li anodes have been rapidly developed in recent years owing to the rising demand for higher-energy-density batteries. However, the safety issues induced by dendrites hinder the practical applications of Li anodes. Here, Li metal anodes stabilized by regulating lithium plating/stripping in vertically aligned microchannels are reported. The current density distribution and morphology evolution of the Li deposits on porous Cu current collectors are systematically analyzed. Based on simulations in COMSOL Multiphysics, the tip effect leads to preferential deposition on the microchannel walls, thus taking full advantage of the lightening rod theory of classical electromagnetism for restraining growth of Li dendrites. The Li anode with a porous Cu current collector achieves an enhanced cycle stability and a higher average Coulombic efficiency of 98.5% within 200 cycles. In addition, the resultant LiFePO4 /Li full battery demonstrates excellent rate capability and stable cycling performance, thus demonstrating promise as a current collector for high-energy-density, safe rechargeable Li batteries.

20.
ACS Nano ; 11(10): 10439-10445, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28926694

RESUMO

Broadening the application area of the triboelectric nanogenerators (TENGs) is one of the research emphases in the study of the TENGs, whose output characteristic is high voltage with low current. Here we design a self-powered electrospinning system, which is composed of a rotating-disk TENG (R-TENG), a voltage-doubling rectifying circuit (VDRC), and a simple spinneret. The R-TENG can generate an alternating voltage up to 1400 V. By using a voltage-doubling rectifying circuit, a maximum constant direct voltage of 8.0 kV can be obtained under the optimal configuration and is able to power the electrospinning system for fabricating various polymer nanofibers, such as polyethylene terephthalate (PET), polyamide-6 (PA6), polyacrylonitrile (PAN), polyvinylidene difluoride (PVDF), and thermoplastic polyurethanes (TPU). The system demonstrates the capability of a TENG for high-voltage applications, such as manufacturing nanofibers by electrospinning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA