Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Cancer ; 135(4): 809-19, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24477565

RESUMO

SOX2 is a transcription factor essential for self-renewal and pluripotency of embryonic stem cells. Recently, SOX2 was found overexpressed in the majority of the lung squamous cell carcinoma (SQC), in which it acts as a lineage-survival oncogene. However, downstream targets/pathways of SOX2 in lung SQC cells remain to be identified. Here, we show that BMP4 is a downstream target of SOX2 in lung SQC. We found that SOX2-silencing-mediated inhibition of cell growth was accompanied by upregulation of BMP4 mRNA and its protein expression. Meta-analysis with 293 samples and qRT-PCR validation with 73 clinical samples revealed an inversely correlated relationship between levels of SOX2 and BMP4 mRNA, and significantly lower mRNA levels in tumor than in adjacent normal tissues. This was corroborated by immunohistochemistry analysis of 35 lung SQC samples showing lower BMP4 protein expression in tumor tissues. Cell-based experiments including siRNA transfection, growth assay and flow cytometry assay, further combined with a xenograft tumor model in mice, revealed that reactivation of BMP4 signaling could partially account for growth inhibition and cell cycle arrest in lung SQC cells upon silencing SOX2. Finally, chromatin immunoprecipitation analysis and luciferase reporter assay revealed that SOX2 could negatively regulate BMP4 promoter activity, possibly through binding to the promoter located in the first intron region of BMP4. Collectively, our findings suggest that BMP4 could act as a tumor suppressor and its downregulation by elevated SOX2 resulting in enhanced growth of lung SQC cells.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Bases de Dados Genéticas , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Transdução de Sinais
2.
Sci Rep ; 7(1): 11893, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928421

RESUMO

CISD2 is a redox-sensitive gene critical for normal development and mitochondrial integrity. CISD2 was known to have aberrant expression in several types of human cancers. However, its relation with lung cancer is still not clear. In this study we found CISD2 mRNA was significantly upregulated in lung adenocarcinoma (ADC) samples, compared with their adjacent normal counterparts, and was correlated with tumor stage, grade, and prognosis based on analysis of clinical specimens-derived expression data in public domain and our validation assay. Cell based assay indicated that CISD2 expression regulated accumulation of reactive oxygen species (ROS), polarization of mitochondrial membrane potential, as well as cell viability, apoptosis, invasiveness, and tumorigenicity. In addition, CISD2 expression was found significantly correlated with stress response/redox signaling genes such as EGR1 and GPX3, while such correlations were also found valid in many public domain data. Taken together, upregulation of CISD2 is involved in an increased antioxidant capacity in response to elevated ROS levels during the formation and progression of lung ADC. The molecular mechanism underlying how CISD2 regulates ROS homeostasis and augments malignancy of lung cancer warrants further investigations.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Regulação Neoplásica da Expressão Gênica , Homeostase , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Células A549 , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Prognóstico
3.
Ultrasound Med Biol ; 37(3): 403-16, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21276654

RESUMO

A near-field ultrasound stimulation system was designed for use in in vitro and in vivo trials. The intensity of ultrasound was studied to optimize the osseointegration of the dental titanium implant into the adjacent bone. MG63 osteoblast-like cells were seeded on commercial purity titanium (CP-Ti) plate, and then sonicated for 3 min/day at a frequency of 1 MHz and intensities of 0.05, 0.15 and 0.30 W/cm(2), using either pulsed or continuous ultrasound. Cells were analyzed to determine viability (inhibition of (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction) and alkaline phosphatase (ALP). Tissue culture was performed in vitro by placing a CP-Ti plate in a cultured rat neonatal calvarial defect in response to ultrasound stimulation. In the in vivo trial, screw-shaped CP-Ti implants were inserted into the metaphysis of rabbit tibia, and then stimulated by ultrasound for 10 min daily for 30 d. All samples were processed for histomorphometric evaluation and analyzed by image system. Color Doppler ultrasonography was inspected to evaluate the supply of blood flow. Pulsed ultrasound groups had higher MTT and ALP than control. Tissue culture indicated that pulsed ultrasound groups promoted cell migration and new bone regeneration more effectively than in the control. In animal study, blood flow and mature type I collagen fibers were more prevalent around titanium implants, and bone formation was accelerated in pulsed ultrasound groups. In conclusion, low-intensity pulsed ultrasound at 0.05-0.3 W/cm(2) may accelerate cell proliferation and promote the maturation of collagen fibers and support osteointegration.


Assuntos
Implantes Dentários , Osseointegração/efeitos da radiação , Osteoblastos/efeitos da radiação , Osteogênese/efeitos da radiação , Fraturas Cranianas/fisiopatologia , Fraturas Cranianas/terapia , Terapia por Ultrassom/métodos , Animais , Linhagem Celular , Humanos , Osseointegração/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Coelhos , Doses de Radiação , Ratos , Sonicação/métodos , Titânio
4.
Clin Cancer Res ; 16(17): 4363-73, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20651055

RESUMO

PURPOSE: SOX9 is an important transcription factor required for development and has been implicated in several types of cancer. However, SOX9 has never been linked to lung cancer to date. Here, we show that SOX9 expression is upregulated in lung adenocarcinoma and show how it is associated with cancer cell growth. EXPERIMENTAL DESIGN: Data mining with five microarray data sets containing 490 clinical samples, quantitative reverse transcription-PCR validation assay in 57 independent samples, and immunohistochemistry assay with tissue microarrays containing 170 lung tissue cores were used to profile SOX9 mRNA and protein expression. Short interference RNA suppression of SOX9 in cell lines was used to scrutinize functional role(s) of SOX9 and associated molecular mechanisms. RESULTS: SOX9 mRNA and protein were consistently overexpressed in the majority of lung adenocarcinoma. Knockdown of SOX9 in lung adenocarcinoma cell lines resulted in marked decrease of adhesive and anchorage-independent growth in concordance with the upregulation of p21 (CDKN1A) and downregulation of CDK4. In agreement with higher SOX9 expression level in lung adenocarcinoma, the p21 mRNA level was significantly lower in tumors than that in normal tissues, whereas the opposite was true for CDK4, supporting the notion that SOX9 negatively and positively regulated p21 and CDK4, respectively. Finally, whereas SOX9-knockdown cells showed significantly attenuated tumorigenicity in mice, SOX9 transfectants consistently showed markedly stronger tumorigenicity. CONCLUSIONS: Our data suggest that SOX9 is a new hallmark of lung adenocarcinoma, in which SOX9 might contribute to gain of tumor growth potential, possibly acting through affecting the expression of cell cycle regulators p21 and CDK4.


Assuntos
Adenocarcinoma/genética , Proliferação de Células , Neoplasias Pulmonares/genética , Fatores de Transcrição SOX9/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Western Blotting , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/metabolismo , Transplante Heterólogo , Carga Tumoral , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA