Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.774
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(24): 5394-5410.e18, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922901

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.


Assuntos
Terapia Genética , Doença de Parkinson , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Levodopa/uso terapêutico , Levodopa/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/terapia , Primatas , Receptores de Dopamina D1/metabolismo , Modelos Animais de Doenças
2.
Cell ; 164(1-2): 279-292, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771496

RESUMO

Mammalian interspecific hybrids provide unique advantages for mechanistic studies of speciation, gene expression regulation, and X chromosome inactivation (XCI) but are constrained by their limited natural resources. Previous artificially generated mammalian interspecific hybrid cells are usually tetraploids with unstable genomes and limited developmental abilities. Here, we report the generation of mouse-rat allodiploid embryonic stem cells (AdESCs) by fusing haploid ESCs of the two species. The AdESCs have a stable allodiploid genome and are capable of differentiating into all three germ layers and early-stage germ cells. Both the mouse and rat alleles have comparable contributions to the expression of most genes. We have proven AdESCs as a powerful tool to study the mechanisms regulating X chromosome inactivation and to identify X inactivation-escaping genes, as well as to efficiently identify genes regulating phenotypic differences between species. A similar method could be used to create hybrid AdESCs of other distantly related species.


Assuntos
Fusão Celular/métodos , Quimera/genética , Células-Tronco Embrionárias/citologia , Células Híbridas , Camundongos , Ratos , Animais , Diferenciação Celular , Corpos Embrioides , Células-Tronco Embrionárias/metabolismo , Feminino , Haploidia , Masculino , Camundongos Endogâmicos , Ratos Endogâmicos F344 , Especificidade da Espécie , Inativação do Cromossomo X
3.
Mol Cell ; 81(1): 25-37.e4, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33238160

RESUMO

Among the five KCNQ channels, also known as the Kv7 voltage-gated potassium (Kv) channels, KCNQ2-KCNQ5 control neuronal excitability. Dysfunctions of KCNQ2-KCNQ5 are associated with neurological disorders such as epilepsy, deafness, and neuropathic pain. Here, we report the cryoelectron microscopy (cryo-EM) structures of human KCNQ4 and its complexes with the opener retigabine or the blocker linopirdine at overall resolutions of 2.5, 3.1, and 3.3 Å, respectively. In all structures, a phosphatidylinositol 4,5-bisphosphate (PIP2) molecule inserts its head group into a cavity within each voltage-sensing domain (VSD), revealing an unobserved binding mode for PIP2. Retigabine nestles in each fenestration, inducing local shifts. Instead of staying within the central pore, linopirdine resides in a cytosolic cavity underneath the inner gate. Electrophysiological analyses of various mutants corroborated the structural observations. Our studies reveal the molecular basis for the modulatory mechanism of neuronal KCNQ channels and provide a framework for structure-facilitated drug discovery targeting these important channels.


Assuntos
Carbamatos/farmacologia , Indóis/farmacologia , Canais de Potássio KCNQ , Fenilenodiaminas/farmacologia , Piridinas/farmacologia , Animais , Microscopia Crioeletrônica , Humanos , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Domínios Proteicos , Células Sf9 , Spodoptera
4.
Immunol Rev ; 321(1): 33-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688390

RESUMO

Neuropathic pain is a common and debilitating modality of chronic pain induced by a lesion or disease of the somatosensory nervous system. Albeit the elucidation of numerous pathophysiological mechanisms and the development of potential treatment compounds, safe and reliable therapies of neuropathic pain remain poor. Multiple stress/cell death pathways have been shown to be implicated in neuroinflammation during neuropathic pain. Here, we summarize the current knowledge of stress/cell death pathways and present an overview of the roles and molecular mechanisms of stress/cell death pathways in neuroinflammation during neuropathic pain, covering intrinsic and extrinsic apoptosis, autophagy, mitophagy, ferroptosis, pyroptosis, necroptosis, and phagoptosis. Small molecule compounds that modulate stress/cell death pathways in alleviating neuropathic pain are discussed mainly based on preclinical neuropathic pain models. These findings will contribute to in-depth understanding of the pathological processes during neuropathic pain as well as bridge the gap between basic and translational research to uncover new neuroprotective interventions.


Assuntos
Neuralgia , Doenças Neuroinflamatórias , Humanos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Apoptose , Piroptose , Autofagia
5.
Plant Cell ; 36(4): 881-898, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37941457

RESUMO

Double fertilization in many flowering plants (angiosperms) often occurs during the hot summer season, but the mechanisms that enable angiosperms to adapt specifically to high temperatures are largely unknown. The actin cytoskeleton is essential for pollen germination and the polarized growth of pollen tubes, yet how this process responds to high temperatures remains unclear. Here, we reveal that the high thermal stability of 11 Arabidopsis (Arabidopsis thaliana) actin-depolymerizing factors (ADFs) is significantly different: ADFs that specifically accumulate in tip-growing cells (pollen and root hairs) exhibit high thermal stability. Through ancestral protein reconstruction, we found that subclass II ADFs (expressed specifically in pollen) have undergone a dynamic wave-like evolution of the retention, loss, and regeneration of thermostable sites. Additionally, the sites of AtADF7 with high thermal stability are conserved in ADFs specific to angiosperm pollen. Moreover, the high thermal stability of ADFs is required to regulate actin dynamics and turnover at high temperatures to promote pollen germination. Collectively, these findings suggest strategies for the adaptation of sexual reproduction to high temperature in angiosperms at the cell biology level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura , Germinação/genética , Arabidopsis/metabolismo , Pólen/metabolismo , Tubo Polínico
6.
Nature ; 590(7844): 47-56, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536649

RESUMO

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.


Assuntos
Biotecnologia/métodos , Biotecnologia/tendências , Celulose/química , Nanoestruturas/química , Desenvolvimento Sustentável/tendências , Materiais Biocompatíveis/química , Géis/química , Humanos , Porosidade
7.
Proc Natl Acad Sci U S A ; 121(45): e2413938121, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39480851

RESUMO

The biomechanical properties of cells and tissues play an important role in our fundamental understanding of the structures and functions of biological systems at both the cellular and subcellular levels. Recently, Brillouin microscopy, which offers a label-free spectroscopic means of assessing viscoelastic properties in vivo, has emerged as a powerful way to interrogate those properties on a microscopic level in living tissues. However, susceptibility to photodamage and photobleaching, particularly when high-intensity laser beams are used to induce Brillouin scattering, poses a significant challenge. This article introduces a transformative approach designed to mitigate photodamage in biological and biomedical studies, enabling nondestructive, label-free assessments of mechanical properties in live biological samples. By leveraging quantum-light-enhanced stimulated Brillouin scattering (SBS) imaging contrast, the signal-to-noise ratio is significantly elevated, thereby increasing sample viability and extending interrogation times without compromising the integrity of living samples. The tangible impact of this methodology is evidenced by a notable three-fold increase in sample viability observed after subjecting the samples to three hours of continuous squeezed-light illumination, surpassing the traditional coherent light-based approaches. The quantum-enhanced SBS imaging holds promise across diverse fields, such as cancer biology and neuroscience where preserving sample vitality is of paramount significance. By mitigating concerns regarding photodamage and photobleaching associated with high-intensity lasers, this technological breakthrough expands our horizons for exploring the mechanical properties of live biological systems, paving the way for an era of research and clinical applications.


Assuntos
Luz , Animais , Humanos , Fenômenos Biomecânicos , Microscopia/métodos , Camundongos
8.
Proc Natl Acad Sci U S A ; 121(6): e2309466121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300866

RESUMO

Congenital anomalies of the lower genitourinary (LGU) tract are frequently comorbid due to genetically linked developmental pathways, and are among the most common yet most socially stigmatized congenital phenotypes. Genes involved in sexual differentiation are prime candidates for developmental anomalies of multiple LGU organs, but insufficient prospective screening tools have prevented the rapid identification of causative genes. Androgen signaling is among the most influential modulators of LGU development. The present study uses SpDamID technology in vivo to generate a comprehensive map of the pathways actively regulated by the androgen receptor (AR) in the genitalia in the presence of the p300 coactivator, identifying wingless/integrated (WNT) signaling as a highly enriched AR-regulated pathway in the genitalia. Transcription factor (TF) hits were then assayed for sexually dimorphic expression at two critical time points and also cross-referenced to a database of clinically relevant copy number variations to identify 252 TFs exhibiting copy variation in patients with LGU phenotypes. A subset of 54 TFs was identified for which LGU phenotypes are statistically overrepresented as a proportion of total observed phenotypes. The 252 TF hitlist was then subjected to a functional screen to identify hits whose silencing affects genital mesenchymal growth rates. Overlap of these datasets results in a refined list of 133 TFs of both functional and clinical relevance to LGU development, 31 of which are top priority candidates, including the well-documented renal progenitor regulator, Sall1. Loss of Sall1 was examined in vivo and confirmed to be a powerful regulator of LGU development.


Assuntos
Variações do Número de Cópias de DNA , Sistema Urinário , Humanos , Estudos Prospectivos , Androgênios/metabolismo , Genitália/metabolismo , Sistema Urinário/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
PLoS Pathog ; 20(3): e1012110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498560

RESUMO

The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Camundongos , Antivirais/metabolismo , Vírus da Influenza A/genética , Chaperonas Moleculares/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
10.
Chem Rev ; 124(7): 4332-4392, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546341

RESUMO

Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.

11.
Nature ; 584(7821): 373-376, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32814888

RESUMO

Nonlinear optical and electrical effects associated with a lack of spatial inversion symmetry allow direction-selective propagation and transport of quantum particles, such as photons1 and electrons2-9. The most common example of such nonreciprocal phenomena is a semiconductor diode with a p-n junction, with a low resistance in one direction and a high resistance in the other. Although the diode effect forms the basis of numerous electronic components, such as rectifiers, alternating-direct-current converters and photodetectors, it introduces an inevitable energy loss due to the finite resistance. Therefore, a worthwhile goal is to realize a superconducting diode that has zero resistance in only one direction. Here we demonstrate a magnetically controllable superconducting diode in an artificial superlattice [Nb/V/Ta]n without a centre of inversion. The nonreciprocal resistance versus current curve at the superconducting-to-normal transition was clearly observed by a direct-current measurement, and the difference of the critical current is considered to be related to the magnetochiral anisotropy caused by breaking of the spatial-inversion and time-reversal symmetries10-13. Owing to the nonreciprocal critical current, the [Nb/V/Ta]n superlattice exhibits zero resistance in only one direction. This superconducting diode effect enables phase-coherent and direction-selective charge transport, paving the way for the construction of non-dissipative electronic circuits.

12.
Nucleic Acids Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119895

RESUMO

High-quality primer design is essential for the success of all polymerase chain reaction (PCR)-based experiments. We previously developed a thermodynamics-based gene-specific quantitative PCR (qPCR) primer database for 147 organisms, which has been used extensively in gene expression studies. However, the number of organisms and the imperfection of function in the database limits its potential applications. Here, we improved the functionality of qPrimerDB to create a more comprehensive primer resource. Specifically, we (i) developed an improved primer design tool, qPrimer, building upon the previous qPrimerDB pipeline, to enhance the efficiency and simplicity of genome-scale qPCR primer design; (ii) pre-computed qPCR primer resources from 1 308 genomes of 1172 organisms and (iii) introduced a complete system for identifying, designing, checking, marking, and submitting qPCR primers. qPrimerDB 2.0 is freely available at https://qprimerdb.biodb.org. The qPrimer source code is available at https://github.com/swu1019lab/qPrimer.

13.
Nucleic Acids Res ; 52(D1): D1024-D1032, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941143

RESUMO

The silkworm Bombyx mori is a domesticated insect that serves as an animal model for research and agriculture. The silkworm super-pan-genome dataset, which we published last year, is a unique resource for the study of global genomic diversity and phenotype-genotype association. Here we present SilkMeta (http://silkmeta.org.cn), a comprehensive database covering the available silkworm pan-genome and multi-omics data. The database contains 1082 short-read genomes, 546 long-read assembled genomes, 1168 transcriptomes, 294 phenotype characterizations (phenome), tens of millions of variations (variome), 7253 long non-coding RNAs (lncRNAs), 18 717 full length transcripts and a set of population statistics. We have compiled publications on functional genomics research and genetic stock deciphering (mutant map). A range of bioinformatics tools is also provided for data visualization and retrieval. The large batch of omics data and tools were integrated in twelve functional modules that provide useful strategies and data for comparative and functional genomics research. The interactive bioinformatics platform SilkMeta will benefit not only the silkworm but also the insect biology communities.


Assuntos
Bombyx , Genoma de Inseto , Animais , Bombyx/genética , Biologia Computacional , Genômica , Metadados , Multiômica
14.
Nucleic Acids Res ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39420601

RESUMO

Enhancers play a critical role in dynamically regulating spatial-temporal gene expression and establishing cell identity, underscoring the significance of designing them with specific properties for applications in biosynthetic engineering and gene therapy. Despite numerous high-throughput methods facilitating genome-wide enhancer identification, deciphering the sequence determinants of their activity remains challenging. Here, we present the DREAM (DNA cis-Regulatory Elements with controllable Activity design platforM) framework, a novel deep learning-based approach for synthetic enhancer design. Proficient in uncovering subtle and intricate patterns within extensive enhancer screening data, DREAM achieves cutting-edge sequence-based enhancer activity prediction and highlights critical sequence features implicating strong enhancer activity. Leveraging DREAM, we have engineered enhancers that surpass the potency of the strongest enhancer within the Drosophila genome by approximately 3.6-fold. Remarkably, these synthetic enhancers exhibited conserved functionality across species that have diverged more than billion years, indicating that DREAM was able to learn highly conserved enhancer regulatory grammar. Additionally, we designed silencers and cell line-specific enhancers using DREAM, demonstrating its versatility. Overall, our study not only introduces an interpretable approach for enhancer design but also lays out a general framework applicable to the design of other types of cis-regulatory elements.

15.
Semin Cancer Biol ; 106-107: 156-165, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39419366

RESUMO

Colorectal cancer (CRC), ranked as the globe's third leading malignancy. Despite advancements in therapeutic approaches, the mortality rate remains distressingly high for those afflicted with advanced stages of the disease. Ferroptosis is a programmed form of cell death. The ways of ferroptosis mainly include promoting the accumulation of cellular ROS and increasing the level of cellular Labile iron pool (LIP). Immunosenescence is characterized by a gradual deterioration of the immune system's ability to respond to pathogens and maintain surveillance against cancer cells. In CRC, this decline is exacerbated by the tumor microenvironment, which can suppress the immune response and promote tumor progression. This paper reviews the relationship between iron prolapse and immune senescence in colorectal cancer, focusing on the following aspects: firstly, the different pathways that induce iron prolapse in colorectal cancer; secondly, immune-immune senescence in colorectal cancer; and lastly, the interactions between immune senescence and iron prolapse in colorectal cancer, e.g., immune-immune senescent cells often exhibit increased oxidative stress, leading to the accumulation of ROS, and consequently to lipid peroxidation and induction of iron-induced cell death. At the same time, ferroptosis induces immune cell senescence as well as alterations in the immune microenvironment by promoting the death of damaged or diseased cells and leading to the inflammation usually associated with it. In conclusion, by exploring the potential targets of ferroptosis and immune senescence in colorectal cancer therapy, we hope to provide a reference for future research.

16.
Plant J ; 120(3): 1079-1093, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39312631

RESUMO

In plants, RNA silencing constitutes a strong defense against viral infection, which viruses counteract with RNA-silencing suppressors (RSSs). Understanding the interactions between viral RSSs and host factors is crucial for elucidating the molecular arms race between viruses and host plants. We report that the helicase motif (Hel) of the replicase encoded by apple stem grooving virus (ASGV)-the main virus affecting pear trees in China-is an RSS that can inhibit both local and systemic RNA silencing, possibly by binding double-stranded (ds) siRNA. The transcription factor related to ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 from pear (PbRAV1) enters the cytoplasm and binds Hel through its C terminus, thereby attenuating its RSS activity by reducing its binding affinity to 21- and 24-nt ds siRNA, and suppressing ASGV infection. PbRAV1 can also target p24, an RSS encoded by grapevine leafroll-associated virus 2 (GLRaV-2), with similar negative effects on p24's suppressive function and inhibition of GLRaV-2 infection. Moreover, like the positive role of the PbRAV1 homolog from grapevine (VvRAV1) in p24's previously reported RSS activity, ASGV Hel can also hijack VvRAV1 and employ the protein to sequester 21-nt ds siRNA, thereby enhancing its own RSS activity and promoting ASGV infection. Furthermore, PbRAV1 neither interacts with CP, an RSS encoded by grapevine inner necrosis virus, nor has any obvious effect on CP's RSS activity. Our results identify an RSS encoded by ASGV and demonstrate that PbRAV1, representing a novel type of RAV transcription factor, plays a defensive role against viral infection by targeting viral RSSs.


Assuntos
Doenças das Plantas , Proteínas de Plantas , Pyrus , Interferência de RNA , Fatores de Transcrição , Pyrus/virologia , Pyrus/genética , Pyrus/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Vírus de Plantas/fisiologia , Vírus de Plantas/genética
17.
Plant J ; 118(3): 802-822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305492

RESUMO

Floral patterns are unique to rice and contribute significantly to its reproductive success. SL1 encodes a C2H2 transcription factor that plays a critical role in flower development in rice, but the molecular mechanism regulated by it remains poorly understood. Here, we describe interactions of the SL1 with floral homeotic genes, SPW1, and DL in specifying floral organ identities and floral meristem fate. First, the sl1 spw1 double mutant exhibited a stamen-to-pistil transition similar to that of sl1, spw1, suggesting that SL1 and SPW1 may located in the same pathway regulating stamen development. Expression analysis revealed that SL1 is located upstream of SPW1 to maintain its high level of expression and that SPW1, in turn, activates the B-class genes OsMADS2 and OsMADS4 to suppress DL expression indirectly. Secondly, sl1 dl displayed a severe loss of floral meristem determinacy and produced amorphous tissues in the third/fourth whorl. Expression analysis revealed that the meristem identity gene OSH1 was ectopically expressed in sl1 dl in the fourth whorl, suggesting that SL1 and DL synergistically terminate the floral meristem fate. Another meristem identity gene, FON1, was significantly decreased in expression in sl1 background mutants, suggesting that SL1 may directly activate its expression to regulate floral meristem fate. Finally, molecular evidence supported the direct genomic binding of SL1 to SPW1 and FON1 and the subsequent activation of their expression. In conclusion, we present a model to illustrate the roles of SL1, SPW1, and DL in floral organ specification and regulation of floral meristem fate in rice.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Meristema , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Mutação
18.
J Virol ; 98(9): e0063924, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39132992

RESUMO

There are four genogroups and 18 genotypes of human sapoviruses (HuSaVs) responsible for acute gastroenteritis. To comprehend their antigenic and virological differences, it is crucial to obtain viral stocks of the different strains. Previously, we utilized the human duodenum-derived cell line HuTu80, and glycocholate, a conjugated bile acid, to replicate and propagate GI.1, GI.2, and GII.3 HuSaVs (H. Takagi et al., Proc Natl Acad Sci U S A 117:32078-32085, 2020, https://10.1073/pnas.2007310117). First, we investigated the impact of HuTu80 passage number on HuSaV propagation. Second, we demonstrated that taurocholate improved the initial replication success rate and viral RNA levels in fecal specimens relative to glycocholate. By propagating 15 HuSaV genotypes (GI.1-7, GII.1-5, -8, and GV.1-2) and accomplishing preparation of viral stocks containing 1.0 × 109 to 3.4 × 1011 viral genomic copies/mL, we found that all strains required bile acids for replication, with GII.4 showing strict requirements for taurocholate. The deduced VP1 sequences of the viruses during the scale-up of serial passaged virus cultures were either identical or differed by only two amino acids from the original sequences in feces. In addition, we purified virions from nine strains of different genotypes and used them as immunogens for antiserum production. Enzyme-linked immunosorbent assays (ELISAs) using rabbit and guinea pig antisera for each of the 15 strains of different genotypes revealed distinct antigenicity among the propagating viruses across genogroups and differences between genotypes. Acquisition of biobanked viral resources and determination of key culture conditions will be valuable to gain insights into the common mechanisms of HuSaV infection. IMPORTANCE: The control of human sapovirus, which causes acute gastroenteritis in individuals of all ages, is challenging because of its association with outbreaks similar to those caused by human norovirus. The establishment of conditions for efficient viral propagation of various viral strains is essential for understanding the infection mechanism and identifying potential control methods. In this study, two critical factors for human sapovirus propagation in a conventional human duodenal cell line were identified, and 15 strains of different genotypes that differed at the genetic and antigenic levels were isolated and used to prepare virus stocks. The preparation of virus stocks has not been successful for noroviruses, which belong to the same family as sapoviruses. Securing virus stocks of multiple human sapovirus strains represents a significant advance toward establishing a reliable experimental system that does not depend on limited virus-positive fecal material.


Assuntos
Infecções por Caliciviridae , Duodeno , Genótipo , Sapovirus , Replicação Viral , Sapovirus/genética , Humanos , Duodeno/virologia , Duodeno/imunologia , Linhagem Celular , Animais , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/imunologia , Gastroenterite/virologia , Antígenos Virais/imunologia , Antígenos Virais/genética , Fezes/virologia , Coelhos , Cobaias , Variação Genética , RNA Viral/genética , Cultura de Vírus , Ácidos e Sais Biliares
19.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36418927

RESUMO

Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Biologia Computacional , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Biologia Computacional/métodos , Combinação de Medicamentos , Simulação por Computador
20.
PLoS Pathog ; 19(12): e1011859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060601

RESUMO

Microsporidia are a group of obligate intracellular parasites that infect almost all animals, causing serious human diseases and major economic losses to the farming industry. Nosema bombycis is a typical microsporidium that infects multiple lepidopteran insects via fecal-oral and transovarial transmission (TOT); however, the underlying TOT processes and mechanisms remain unknown. Here, we characterized the TOT process and identified key factors enabling N. bombycis to invade the ovariole and oocyte of silkworm Bombyx mori. We found that the parasites commenced with TOT at the early pupal stage when ovarioles penetrated the ovary wall and were exposed to the hemolymph. Subsequently, the parasites in hemolymph and hemolymph cells firstly infiltrated the ovariole sheath, from where they invaded the oocyte via two routes: (I) infecting follicular cells, thereby penetrating oocytes after proliferation, and (II) infecting nurse cells, thus entering oocytes following replication. In follicle and nurse cells, the parasites restructured and built large vacuoles to deliver themselves into the oocyte. In the whole process, the parasites were coated with B. mori vitellogenin (BmVg) on their surfaces. To investigate the BmVg effects on TOT, we suppressed its expression and found a dramatic decrease of pathogen load in both ovarioles and eggs, suggesting that BmVg plays a crucial role in the TOT. Thereby, we identified the BmVg domains and parasite spore wall proteins (SWPs) mediating the interaction, and demonstrated that the von Willebrand domain (VWD) interacted with SWP12, SWP26 and SWP30, and the unknown function domain (DUF1943) bound with the SWP30. When disrupting these interactions, we found significant reductions of the pathogen load in both ovarioles and eggs, suggesting that the interplays between BmVg and SWPs were vital for the TOT. In conclusion, our study has elucidated key aspects about the microsporidian TOT and revealed the key factors for understanding the molecular mechanisms underlying this transmission.


Assuntos
Bombyx , Nosema , Animais , Humanos , Vitelogeninas/metabolismo , Esporos Fúngicos/metabolismo , Nosema/metabolismo , Bombyx/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA