RESUMO
KEY MESSAGE: GhAP genes were identified as the candidates involved in cotton fiber length under the scope of fine mapping a stable fiber length QTL, qFLD05. Moreover, the transcription factor GhWRKY40 positively regulated GhAP3 to decrease fiber length. Fiber length (FL) is an economically important fiber quality trait. Although several genes controlling cotton fiber development have been identified, our understanding of this process remains limited. In this study, an FL QTL (qFLD05) was fine-mapped to a 216.9-kb interval using a secondary F2:3 population derived from the upland hybrid cultivar Ji1518. This mapped genomic segment included 15 coding genes, four of which were annotated as aspartyl proteases (GhAP1-GhAP4). GhAPs were identified as candidates for qFLD05 as the sequence variations in GhAPs were associated with FL deviations in the mapping population, and functional validation of GhAP3 and GhAP4 indicated a longer FL following decreases in their expression levels through virus-induced gene silencing (VIGS). Subsequently, the potential involvement of GhWRKY40 in the regulatory network was revealed: GhWRKY40 positively regulated GhAP3's expression according to transcriptional profiling, VIGS, yeast one-hybrid assays and dual-luciferase experiments. Furthermore, alterations in the expression of the eight previously reported cotton FL-responsive genes from the above three VIGS lines (GhAP3, GhAP4 and GhWRKY40) implied that MYB5_A12 was involved in the GhWRKY40-GhAP network. In short, we unveiled the unprecedented FL regulation roles of GhAPs in cotton, which was possibly further regulated by GhWRKY40. These findings will reveal the genetic basis of FL development associated with qFLD05 and be beneficial for the marker-assisted selection of long-staple cotton.
Assuntos
Ácido Aspártico Proteases , Gossypium/genética , Fibra de Algodão , FenótipoRESUMO
KEY MESSAGE: A GST for red-spot-petals in Gossypium arboreum was identified as the candidate under the scope of multi-omics approaches. Colored petal spots are correlated with insect pollination efficiency in Gossypium species. However, molecular mechanisms concerning the formation of red spots on Gossypium arboreum flowers remain elusive. In the current study, the Shixiya1-R (SxyR, with red spots) × Shixiya1-W (SxyW, without red spots) segregating population was utilized to determine that the red-spot-petal phenotype was levered by a single dominant locus. This phenotype was expectedly related to the anthocyanin metabolites, wherein the cyanidin and delphinidin derivatives constituted the major partition. Subsequently, this dominant locus was narrowed to a 3.27 Mb range on chromosome 7 by genomic resequencing from the two parents and the two segregated progeny bulks that have spotted petals or not. Furthermore, differential expressed genes generated from the two bulks at either of three sequential flower developmental stages that spanning the spot formation were intersected with the annotated ones that allocated to the 3.27 Mb interval, which returned eight genes. A glutathione S-transferase-coding gene (Gar07G08900) out of the eight was the only one that exhibited simultaneously differential expression among all three developmental stages, and it was therefore considered to be the probable candidate. Finally, functional validation upon this candidate was achieved by the appearance of scattered petal spots with inhibited expression of Gar07G08900. In conclusion, the current report identified a key gene for the red spotted petal in G. arboreum under the scope of multi-omics approaches, such efforts and embedded molecular resources would benefit future applications underlying the flower color trait in cotton.
Assuntos
Antocianinas , Gossypium , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Gossypium/genética , Gossypium/metabolismo , TranscriptomaRESUMO
BACKGROUND: Cotton fiber, a highly elongated, thickened single cell of the seed epidermis, is a powerful cell wall research model. Fiber length, largely determined during the elongation stage, is a key property of fiber quality. Several studies using expressed sequence tags and microarray analysis have identified transcripts that accumulate preferentially during fiber elongation. To further show the mechanism of fiber elongation, we used Digital Gene Expression Tag Profiling to compare transcriptome data from longer fiber chromosome introgressed lines (CSILs) containing segments of various Gossypium barbadense chromosomes with data from its recurrent parent TM-1 during fiber elongation (from 5 DPA to 20 DPA). RESULTS: A large number of differentially expressed genes (DEGs) involved in carbohydrate, fatty acid and secondary metabolism, particularly cell wall biosynthesis, were highly upregulated during the fiber elongation stage, as determined by functional enrichment and pathway analysis. Furthermore, DEGs related to hormone responses and transcription factors showed upregulated expression levels in the CSILs. Moreover, metabolic and regulatory network analysis indicated that the same pathways were differentially altered, and distinct pathways exhibited altered gene expression, in the CSILs. Interestingly, mining of upregulated DEGs in the introgressed segments of these CSILs based on D-genome sequence data showed that these lines were enriched in glucuronosyltransferase, inositol-1, 4, 5-trisphosphate 3-kinase and desulfoglucosinolate sulfotransferase activity. These results were similar to the results of transcriptome analysis. CONCLUSIONS: This report provides an integrative network about the molecular mechanisms controlling fiber length, which are mainly tied to carbohydrate metabolism, cell wall biosynthesis, fatty acid metabolism, secondary metabolism, hormone responses and Transcription factors. The results of this study provide new insights into the critical factors associated with cell elongation and will facilitate further research aimed at understanding the mechanisms underlying cotton fiber elongation.
Assuntos
Cromossomos de Plantas/genética , Fibra de Algodão , Perfilação da Expressão Gênica , Gossypium/anatomia & histologia , Gossypium/genética , Hibridização Genética , Parede Celular/metabolismo , Análise por Conglomerados , Ontologia Genética , Genes de Plantas/genética , Gossypium/citologia , Gossypium/metabolismo , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Fatores de Transcrição/metabolismoRESUMO
High fiber strength (FS) premium cotton has significant market demand. Consequently, enhancing FS is a major objective in breeding quality cotton. However, there is a notable lack of known functionally applicable genes that can be targeted for breeding. To address this issue, our study used specific length-amplified fragment sequencing combined with bulk segregant analysis to study FS trait in an F2 population. Subsequently, we integrated these results with previous quantitative trait locus mapping results regarding fiber quality, which used simple sequence repeat markers in F2, F2:3, and recombinant inbred line populations. We identified a stable quantitative trait locus qFSA06 associated with FS located on chromosome A06 (90.74-90.83 Mb). Within this interval, we cloned a gene, GhALDH7B4_A06, which harbored a critical mutation site in coding sequences that is distinct in the two parents of the tested cotton line. In the paternal parent Ji228, the gene is normal and referred to as GhALDH7B4_A06O; however, there is a nonsense mutation in the maternal parent Ji567 that results in premature termination of protein translation, and this gene is designated as truncated GhALDH7B4_A06S. Validation using recombinant inbred lines and gene expression analysis revealed that this mutation site is correlated with cotton FS. Virus-induced gene silencing of GhALDH7B4 in cotton caused significant decreases in FS and fiber micronaire. Conversely, GhALDH7B4_A06O overexpression in Arabidopsis boosted cell wall component contents in the stem. The findings of our study provide a candidate gene for improving cotton fiber quality through molecular breeding.
RESUMO
Fiber quality improvement is a primary goal in cotton breeding. Identification of fiber quality-related genes and understanding the underlying molecular mechanisms are essential prerequisites. Previously, studies determined that silencing the gene GhWRKY40 resulted in longer cotton fibers; however, both the underlying mechanisms and whether this transcription factor is additionally involved in the regulation of cotton fiber strength/fineness are unknown. In the current study, we verified that GhWRKY40 influences the fiber strength, fiber fineness, and fiber surface structure by using virus-induced gene silencing (VIGS). Potential proteins that may interact with the nucleus-localized GhWRKY40 were screened in a yeast two-hybrid (Y2H) nuclear-system cDNA library constructed from fibers at 0, 10, and 25 days post-anthesis (DPA) in two near-isogenic lines differing in fiber length and strength. An aspartyl protease/asparaginase-related protein, GhAPD6, was identified and confirmed by Y2H and split-luciferase complementation assays. The expression of GhAPD6 was approximately 30-fold higher in the GhWRKY40-VIGS lines at 10 DPA and aspartyl protease activity was significantly upregulated in the GhWRKY40-VIGS lines at 10-20 DPA. This study suggested that GhWRKY40 may interact with GhAPD6 to regulate fiber development in cotton. The results provide a theoretical reference for the selection and breeding of high-quality cotton fibers assisted by molecular technology.
Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Fatores de Transcrição , Gossypium/genética , Gossypium/metabolismo , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asparaginase/genética , Asparaginase/metabolismoRESUMO
Oxide-based memristors composed of Ag/porous SiOx/Si stacks are fabricated using different etching time durations between 0 and 90 s, and the memristive properties are analyzed in the relative humidity (RH) range of 30-60%. The combination of humidity and porous structure provides binding sites to control silver filament formation with a confined nanoscale channel. The memristive properties of devices show high on/off ratios up to 108 and a dispersion coefficient of 0.1% of the high resistance state (CHRS) when the RH increases to 60%. Humidity-mediated silver ion migration in the porous SiOx memristors is investigated, and the mechanism leading to the synergistic effects between the porous structure and environmental humidity is elucidated. The artificial neural network constructed theoretically shows that the recognition rate increases from 60.9 to 85.29% in the RH range of 30-60%. The results and theoretical understanding provide insights into the design and optimization of oxide-based memristors in neuromorphic computing applications.
RESUMO
Cotton that serves natural fiber for the textile industry is an important industrial crop. However, abiotic stress imposed a significant negative impact on yield and quality of cotton fiber. Carotenoid cleavage oxygenases (CCOs) that specifically catalyze the cleavage of carotenoid are essential for plant growth and development and abiotic stress response. While information of cotton CCOs and their potential functions in abiotic stress is still far from satisfactory, which imposes restrictions on application in genetic breeding for stress resistance. In this study, 15, 15, and 30 CCOs were identified from Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum, respectively. Phylogenetic relationship indicated that CCO genes could be classified into two groups (NCEDs and CCDs). Cis-elements prediction showed that there were 18 types of stress-related cis-elements in promoter regions. Analysis with transcriptome data revealed tissue-specific expression pattern of cotton CCOs. qRT-PCR analysis revealed only that GhNCED3a_A/D and GhNCED3c_A/D had strong response to drought, salt, and cold stress, while GhCCD1_A/D and GhCCD4_A showed relatively slight expression changes. Virus-induced gene silencing of GaNCED3a, the ortholog gene of GhNCED3a_A/D, suggested that silenced plants exhibited decreased resistance not only to drought but also to salt, with significantly reduced proline content, and high malondialdehyde content and water loss rate. In addition, stress response genes RD29A, DREB1A, and SOS1 significantly downregulated under drought and salt stress in silenced plants compared to control plants, indicating that GaNCED3a played an important role in drought and salt response. The results provided valuable insights into function analysis of cotton CCOs in abiotic stress response, and suggested potential benefit genes for stress-resistant breeding.
Assuntos
Secas , Gossypium , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Oxigenases , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Estresse Salino/genética , Estresse Fisiológico/genéticaRESUMO
The objective of this study was to evaluate the effect of different treatments-heat treatment (HT), sonication (SC), thermosonication (TS), manosonication (MS), manothermal (MT), and manothermosonication (MTS) on Escherichia coli O157:H7, polyphenol oxidase (PPO), and anthocyanin content in blueberry juice. First, samples were treated at different temperatures (30, 40, 50, 60, 70, and 80°C) and power intensities (280, 420, 560, and 700W) for 10min. Subsequently, samples were treated using combinations of power intensity and mild temperature for 10min. For further study, samples were treated using HT (80°C), TS (40°C, 560W), MT (350MPa, 40°C), MS (560W, 5min/350MPa), or MTS (560W, 5min, 40°C/350MPa, 40°C) for 5, 10, 15, 20min for each treatment, and the results compared between treatments. HT significantly reduced PPO activation (2.05% residual activity after only 5min), and resulted in a 2.00-log reduction in E. coli O157:H7 and an 85.25% retention of anthocyanin. Escherichia coli O157:H7 was slightly inactivated by TS after 5min (0.17-log reduction), while residual PPO activity was 23.36% and anthocyanin retention was 98.48%. However, Escherichia coli O157:H7 was rapidly inactivated by MTS (5.85-log reduction) after 5min, while anthocyanin retention was 97.49% and residual PPO activity dropped to 10.91%. The destruction of E. coli cells as a result of these treatments were confirmed using SEM and TEM. Therefore, a combination of sonication, high pressure, and mild heat allows the safety of blueberry juice to be maintained without compromising the retention of desirable antioxidant compounds.
Assuntos
Antocianinas/análise , Bebidas/análise , Bebidas/microbiologia , Catecol Oxidase/metabolismo , Escherichia coli O157 , Manipulação de Alimentos/métodos , Sonicação , Mirtilos Azuis (Planta)/química , Mirtilos Azuis (Planta)/microbiologia , Escherichia coli O157/fisiologia , Temperatura Alta , Viabilidade Microbiana , PressãoRESUMO
BACKGROUND: Cotton has been cultivated and used to make fabrics for at least 7000 years. Two allotetraploid species of great commercial importance, Gossypium hirsutum and Gossypium barbadense, were domesticated after polyploidization and are cultivated worldwide. Although the overall genetic diversity between these two cultivated species has been studied with limited accessions, their population structure and genetic variations remain largely unknown. RESULTS: We resequence the genomes of 147 cotton accessions, including diverse wild relatives, landraces, and modern cultivars, and construct a comprehensive variation map to provide genomic insights into the divergence and dual domestication of these two important cultivated tetraploid cotton species. Phylogenetic analysis shows two divergent groups for G. hirsutum and G. barbadense, suggesting a dual domestication processes in tetraploid cottons. In spite of the strong genetic divergence, a small number of interspecific reciprocal introgression events are found between these species and the introgression pattern is significantly biased towards the gene flow from G. hirsutum into G. barbadense. We identify selective sweeps, some of which are associated with relatively highly expressed genes for fiber development and seed germination. CONCLUSIONS: We report a comprehensive analysis of the evolution and domestication history of allotetraploid cottons based on the whole genomic variation between G. hirsutum and G. barbadense and between wild accessions and modern cultivars. These results provide genomic bases for improving cotton production and for further evolution analysis of polyploid crops.
Assuntos
Domesticação , Genoma de Planta , Genômica , Gossypium/genética , Tetraploidia , Adaptação Biológica , Cromossomos de Plantas , Evolução Molecular , Perfilação da Expressão Gênica , Variação Genética , Genética Populacional , Genômica/métodos , Genótipo , Gossypium/classificação , Mutação INDEL , Filogenia , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Seleção GenéticaRESUMO
The morphology of cotton leaves varies considerably. Phenotypes, including okra, sea-island, super-okra, and broad leaf, are controlled by a multiple allele locus, L2 Okra leaf (L2°) is an incomplete mutation that alters leaf shape by increasing the length of lobes with deeper sinuses. Using a map-based cloning strategy, we cloned the L2 locus gene, which encodes a LATE MERISTEM IDENTITY 1 (LMI1)-like transcription factor (GhOKRA). Silencing GhOKRA leads to a change in phenotype from okra to broad leaf. Overexpression of GhOKRA in Arabidopsis thaliana greatly increases the degree of the leaf lobes and changes the leaf shape. Premature termination of translation in GhOKRA results in the production of broad leaves. The sequences of OKRA from diploid progenitor D-genome species, and wild races and domesticated allotetraploid cottons in Gossypium hirsutum show that a premature termination mutation occurred before and after the formation of tetraploid cotton, respectively. This study provides genomic insights into the two interspecific hybridization events: one produced the present broad leaf and another formed okra leaf phenotype with complete OKRA, that occurred during allotetraploid cotton formation.
Assuntos
Gossypium/genética , Hibridização Genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Gossypium/anatomia & histologia , Fenótipo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/biossíntese , Tetraploidia , Fatores de Transcrição/biossínteseRESUMO
In this work, we reported a facile approach to prepare a uniform copper ferrite nanoparticle-attached graphene nanosheet (CuFe2O4-GN). A one-step solvothermal method featuring the reduction of graphene oxide and formation of CuFe2O4 nanoparticles was efficient, scalable, green, and controllable. The composite nanosheet was fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), which demonstrated that CuFe2O4 nanoparticles with a diameter of approximately 100 nm were densely and compactly deposited on GN. To investigate the formation mechanism of CuFe2O4-GN, we discussed in detail the effects of a series of experimental parameters, including the concentrations of the precursor, precipitation agent, stabilizer agent, and graphene oxide on the size and morphology of the resulting products. Furthermore, the electrochemical properties of the CuFe2O4-GN composite were studied by cyclic voltammetry and galvanostatic charge-discharge measurements. The composite showed high electrochemical capacitance (576.6 F·g(-1) at 1 A·g(-1)), good rate performance, and cycling stability. These results demonstrated that the composite, as a kind of electrode materials, had a high specific capacitance and good retention. The versatile CuFe2O4-GN holds great promise for application in a wide range of electrochemical fields because of the remarkable synergistic effects between CuFe2O4 nanoparticles and graphene.
RESUMO
Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.
Assuntos
Fibra de Algodão , Genoma de Planta , Gossypium/genética , Proteínas de Plantas/genética , Sequência de Bases , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/biossíntese , Análise de Sequência de DNA , TetraploidiaRESUMO
Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs) that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs) were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes), glycolysis/gluconeogenesis (122 genes), phenylpropanoid biosynthesis (101 genes), and oxidative phosphorylation (87 genes), etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.