Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(51): 32584-32593, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33293421

RESUMO

Adiponectin has emerged as a potential therapy for type 2 diabetes mellitus, but the molecular mechanism by which adiponectin reverses insulin resistance remains unclear. Two weeks of globular adiponectin (gAcrp30) treatment reduced fasting plasma glucose, triglyceride (TAG), and insulin concentrations and reversed whole-body insulin resistance, which could be attributed to both improved insulin-mediated suppression of endogenous glucose production and increased insulin-stimulated glucose uptake in muscle and adipose tissues. These improvements in liver and muscle sensitivity were associated with ∼50% reductions in liver and muscle TAG and plasma membrane (PM)-associated diacylglycerol (DAG) content and occurred independent of reductions in total ceramide content. Reductions of PM DAG content in liver and skeletal muscle were associated with reduced PKCε translocation in liver and reduced PKCθ and PKCε translocation in skeletal muscle resulting in increased insulin-stimulated insulin receptor tyrosine1162 phosphorylation, IRS-1/IRS-2-associated PI3-kinase activity, and Akt-serine phosphorylation. Both gAcrp30 and full-length adiponectin (Acrp30) treatment increased eNOS/AMPK activation in muscle and muscle fatty acid oxidation. gAcrp30 and Acrp30 infusions also increased TAG uptake in epididymal white adipose tissue (eWAT), which could be attributed to increased lipoprotein lipase (LPL) activity. These data suggest that adiponectin and adiponectin-related molecules reverse lipid-induced liver and muscle insulin resistance by reducing ectopic lipid storage in these organs, resulting in decreased plasma membrane sn-1,2-DAG-induced nPKC activity and increased insulin signaling. Adiponectin mediates these effects by both promoting the storage of TAG in eWAT likely through stimulation of LPL as well as by stimulation of AMPK in muscle resulting in increased muscle fat oxidation.


Assuntos
Adiponectina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Diglicerídeos/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Quinase C/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
2.
Proc Natl Acad Sci U S A ; 117(28): 16616-16625, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601203

RESUMO

Enhanced inflammation is believed to contribute to overnutrition-induced metabolic disturbance. Nutrient flux has also been shown to be essential for immune cell activation. Here, we report an unexpected role of nutrient-sensing O-linked ß-N-acetylglucosamine (O-GlcNAc) signaling in suppressing macrophage proinflammatory activation and preventing diet-induced metabolic dysfunction. Overnutrition stimulates an increase in O-GlcNAc signaling in macrophages. O-GlcNAc signaling is down-regulated during macrophage proinflammatory activation. Suppressing O-GlcNAc signaling by O-GlcNAc transferase (OGT) knockout enhances macrophage proinflammatory polarization, promotes adipose tissue inflammation and lipolysis, increases lipid accumulation in peripheral tissues, and exacerbates tissue-specific and whole-body insulin resistance in high-fat-diet-induced obese mice. OGT inhibits macrophage proinflammatory activation by catalyzing ribosomal protein S6 kinase beta-1 (S6K1) O-GlcNAcylation and suppressing S6K1 phosphorylation and mTORC1 signaling. These findings thus identify macrophage O-GlcNAc signaling as a homeostatic mechanism maintaining whole-body metabolism under overnutrition.


Assuntos
Macrófagos/imunologia , N-Acetilglucosaminiltransferases/imunologia , Obesidade/imunologia , Proteínas Quinases S6 Ribossômicas 90-kDa/imunologia , Acetilglucosamina/imunologia , Tecido Adiposo/imunologia , Animais , Humanos , Ativação de Macrófagos , Macrófagos/enzimologia , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Obesidade/enzimologia , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais
3.
Bioorg Med Chem ; 23(13): 3722-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934229

RESUMO

A series of compounds with monoamine oxidase inhibition and biometal chelation activities were designed, synthesised and evaluated as agents against Alzheimer's disease. The in vitro assay shows that most target compounds exhibit good MAO-B activities with submicromolar IC50 values and antioxidant activity (1.49-5.67 ORAC-FL values). The selected compounds were used to determine the biometal chelating ability using UV-vis spectrometry and high-resolution mass spectrometry, which confirm that they can effectively interact with copper(II), iron(II) and zinc(II). The ThT fluorescence binding assay indicates that the synthetic compounds can inhibit Cu(II)-induced Aß1-42 aggregation. The parallel artificial membrane permeation assay shows that most target compounds can cross the BBB. Based on these results, compound 8a was selected as a potential multifunctional agent for the treatment of AD.


Assuntos
Antioxidantes/síntese química , Quelantes/síntese química , Inibidores da Monoaminoxidase/síntese química , Monoaminoxidase/química , Selegilina/síntese química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Antioxidantes/farmacologia , Cátions Bivalentes , Permeabilidade da Membrana Celular , Quelantes/farmacologia , Cobre/química , Humanos , Ferro/química , Membranas Artificiais , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Selegilina/farmacologia , Soluções , Zinco/química
4.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33411692

RESUMO

White adipose tissue (WAT) insulin action has critical anabolic function and is dysregulated in overnutrition. However, the mechanism of short-term high-fat diet-induced (HFD-induced) WAT insulin resistance (IR) is poorly understood. Based on recent evidences, we hypothesize that a short-term HFD causes WAT IR through plasma membrane (PM) sn-1,2-diacylglycerol (sn-1,2-DAG) accumulation, which promotes protein kinase C-ε (PKCε) activation to impair insulin signaling by phosphorylating insulin receptor (Insr) Thr1160. To test this hypothesis, we assessed WAT insulin action in 7-day HFD-fed versus regular chow diet-fed rats during a hyperinsulinemic-euglycemic clamp. HFD feeding caused WAT IR, reflected by impaired insulin-mediated WAT glucose uptake and lipolysis suppression. These changes were specifically associated with PM sn-1,2-DAG accumulation, higher PKCε activation, and impaired insulin-stimulated Insr Tyr1162 phosphorylation. In order to examine the role of Insr Thr1160 phosphorylation in mediating lipid-induced WAT IR, we examined these same parameters in InsrT1150A mice (mouse homolog for human Thr1160) and found that HFD feeding induced WAT IR in WT control mice but not in InsrT1150A mice. Taken together, these data demonstrate the importance of the PM sn-1,2-DAG/PKCε/Insr Thr1160 phosphorylation pathway in mediating lipid-induced WAT IR and represent a potential therapeutic target to improve WAT insulin sensitivity.


Assuntos
Tecido Adiposo Branco/metabolismo , Diglicerídeos/farmacologia , Resistência à Insulina/fisiologia , Hipernutrição/metabolismo , Proteína Quinase C-épsilon/metabolismo , Receptor de Insulina/metabolismo , Animais , Antígenos CD , Dieta Hiperlipídica , Gorduras na Dieta , Glucose/metabolismo , Humanos , Insulina/metabolismo , Lipólise , Fígado/metabolismo , Masculino , Camundongos , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
5.
J Clin Invest ; 130(4): 2001-2016, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32149734

RESUMO

Meal ingestion increases body temperature in multiple species, an effect that is blunted by obesity. However, the mechanisms responsible for these phenomena remain incompletely understood. Here we show that refeeding increases plasma leptin concentrations approximately 8-fold in 48-hour-fasted lean rats, and this normalization of plasma leptin concentrations stimulates adrenomedullary catecholamine secretion. Increased adrenal medulla-derived plasma catecholamines were necessary and sufficient to increase body temperature postprandially, a process that required both fatty acids generated from adipose tissue lipolysis and ß-adrenergic activation of brown adipose tissue (BAT). Diet-induced obese rats, which remained relatively hyperleptinemic while fasting, did not exhibit fasting-induced reductions in temperature. To examine the impact of feeding-induced increases in body temperature on energy balance, we compared rats fed chronically by either 2 carbohydrate-rich boluses daily or a continuous isocaloric intragastric infusion. Bolus feeding increased body temperature and reduced weight gain compared with continuous feeding, an effect abrogated by treatment with atenolol. In summary, these data demonstrate that leptin stimulates a hypothalamus-adrenal medulla-BAT axis, which is necessary and sufficient to induce lipolysis and, as a result, increase body temperature after refeeding.


Assuntos
Tecido Adiposo Marrom/metabolismo , Medula Suprarrenal/metabolismo , Regulação da Temperatura Corporal/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Leptina/metabolismo , Período Pós-Prandial/fisiologia , Animais , Lipólise/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
6.
Eur J Med Chem ; 114: 134-40, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-26978121

RESUMO

Phosphodiesterase-4 (PDE4) is an anti-inflammatory target for treatment of asthma and chronic obstructive pulmonary disease (COPD). Here, we report the isolation and characterization of 13 compounds (G1-G13) by bioassay-guided fractionation of the ethyl acetate extraction of Gaultheria yunnanensis (FRANCH.), one of which pentacyclic triterpene (G1) has never been reported. Four of them (G1, G2, G4, and G5) inhibit PDE4 with the IC50 values < 20 µM and G1 is the most potent ingredient with an IC50 of 245 nM and moderate selectivity over other PDE families. Molecular dynamics simulations suggest that G1 forms a hydrogen bond with Asn362, in addition to the hydrogen bond with Gln369 and π-π interactions with Phe372, which are commonly observed in the binding of most PDE4 inhibitors. The calculated binding free energies for the interactions of PDE4-G1 and PDE4-G2 are -19.4 and -18.8 kcal/mol, in consistence with the bioassay that G1 and G2 have IC50 of 245 nM and 542 nM, respectively. The modelling results of these active compounds may aid the rational design of novel PDE4 inhibitors as anti-inflammatory agents.


Assuntos
Produtos Biológicos/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Descoberta de Drogas , Gaultheria/química , Inibidores da Fosfodiesterase 4/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Relação Dose-Resposta a Droga , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/isolamento & purificação , Plasmídeos , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA