Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nano Lett ; 24(1): 458-465, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148139

RESUMO

The subvalent silver kernel represents the nascent state of silver cluster formation, yet the growth mechanism has long been elusive. Herein, two silver nanoclusters (Ag30 and Ag34) coprotected by TC4A4- (H4TC4A = p-tert-butylthiacalix[4]arene) and TBPMT- (TBPMTH = 4-tert-butylbenzenemethanethiol) containing 6e and 4e silver kernels are synthesized and characterized. The trimer of the 2e superatom Ag14 kernel in Ag30 is built from a central Ag6 octahedron sandwiched by two orthogonally oriented Ag5 trigonal bipyramids through sharing vertexes, whereas a double-octahedral Ag10 kernel in Ag34 is a dimer of 2e superatoms. They manifest disparate polyhedron fusion growth patterns at the beginning of the silver cluster formation. Their excellent solution stabilities are contributed by the multisite and multidentate coordination fashion of TC4A4- and the special valence electron structures. This work demonstrates the precise control of silver kernel growth by the solvent strategy and lays a foundation for silver nanocluster application in photothermal conversion.

2.
Bioorg Chem ; 143: 107016, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086239

RESUMO

Hematopoietic progenitor kinase 1 (HPK1, MAP4K1) is a promising target for immune-oncology therapy. It has been recently demonstrated that loss of HPK1 kinase activity can enhance T cell receptor (TCR) signaling. However, many essential functions mediated by the HPK1 scaffolding role are still beyond the reach of any kinase inhibitor. Proteolysis targeting chimera (PROTAC) has emerged as a promising strategy for pathogenic proteins degradation with the characteristics of rapid, reversible, and low-cost versus RNA interference or DNA knock-out technology. Herein we first disclosed the design, synthesis, and evaluation of a series of thalidomide-based PROTAC molecules and identified B1 as a highly efficient HPK1 degrader with DC50 value of 1.8 nM. Further mechanism investigation demonstrated that compound B1 inhibits phosphorylation of the SLP76 protein with IC50 value of 496.1 nM, and confirmed that B1 is a bona fide HPK1-PROTAC degrader. Thus, this study provides a basis for HPK1 degraders development and the candidate could be used as a potential chemical tool for further investigation of the kinase-independent signaling of HPK1 in TCR.


Assuntos
Quimera de Direcionamento de Proteólise , Transdução de Sinais , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Bioorg Chem ; 153: 107866, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369461

RESUMO

Hematopoietic Progenitor Kinase 1 (HPK1, also known as MAP4K1) is a hematopoiesis-specific serine/threonine kinase that belongs to the MAP4K family of Ste20-related protein kinases. HPK1 has been identified as a negative regulator of T-cell receptor signaling. Recent studies have indicated that the inhibition or knockout of HPK1 kinase function can effectively alleviate T cell exhaustion, enhance T cell functionality, and improve the therapeutic efficacy of tumor immunotherapy. In recent years, small molecule chemical drugs targeting HPK1 have made significant progress and have become a hot topic in the research and development of tumor immunotherapy drugs. However, the advancement of small molecule drugs that target HPK1 is hindered by various challenges, including the limited selectivity, insufficient immune stimulation, and the ambiguity surrounding role of non-kinase scaffold functions of HPK1 in tumor immune responses. This review briefly describes the biological structure of HPK1 and its related signaling pathways in tumor immunity, systematically discusses the latest research progress in small molecule chemical drugs targeting HPK1. Finally, we summarize and prospect the opportunities and challenges in the drug development of small molecule chemical drugs targeting HPK1 in tumor immunity.

4.
Environ Res ; 206: 112267, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34756915

RESUMO

Water pollution, which continuously threatens human health and the sustainable development of society, has become a major concern. Photocatalytic degradation is an effective strategy to remove organic dyes from wastewater. For this strategy, it is crucial to select the appropriate catalyst. Using triphenylphosphine oxide (OPPh3) as the ligand, phosphomolybdic acid as the anion template, three new lanthanide complexes [Ln(OPPh3)4(H2O)3](PMo12O40)∙4C2H5OH (1-3) (Ln = Sm, Gd, Tb) were synthesized. The raw materials for the reaction are cheap and readily available. The convenient synthesis method is environmentally friendly, with high yield (70%-80%). Complexes 1-3 are all seven-coordinated mononuclear structures centered on lanthanide ions, [PMo12O40]3- anions and solvent molecules are not coordinated with metal ions. These mononuclear structures eventually form complicated 3D supramolecular structures through hydrogen bonds, Mo-O … π or C-H … π weak interactions. Complexes 1-3 photocatalytic degradation of MB have high removal rates, as catalysts have enough stability to be reused, and can be used as excellent catalysts for the degradation of dye molecules in sewage. Among them, the removal rate of MB by photodegradation of complex 2 was highest (99.50%). In addition, the effects of different initial concentrations of MB solution and different types of organic dyes on the photocatalysis experiment were investigated. The photocatalytic reaction mechanism of complexes 1-3 was also studied. Due to the similar structures of complexes 1-3, they have almost the same THz absorption spectra with different absorption intensity, which may be attributed to the difference of the number of weak interactions. Therefore, terahertz spectroscopy can be used as a sensitive method to distinguish and determine small differences between lanthanide-organic complexes. This is the first time that this spectrum has been used to characterize lanthanide phosphine oxide complexes modified by [PMo12O40]3-.


Assuntos
Elementos da Série dos Lantanídeos , Fosfinas , Ânions , Humanos , Elementos da Série dos Lantanídeos/química , Óxidos , Polieletrólitos
5.
Angew Chem Int Ed Engl ; 61(45): e202211628, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36104622

RESUMO

The composition of protection monolayer exerts great influence on the molecular and electronic structures of atomically precise monolayer protected metal nanoclusters. Four isostructural Ag/cyanurate/phosphine metallamacrocyclic monolayer protected Ag22 nanoclusters are synthesized by kinetically controlled in-situ ligand formation-driven strategy. These eight-electron superatomic silver nanoclusters feature an unprecedented interfacial bonding structure with diverse E-Ag (E=O/N/P/Ag) interactions between the Ag13 core and metallamacrocyclic monolayer, and displays thermally activated delayed fluorescence (TADF), benefiting from their distinct donor-acceptor type electronic structures. This work not only unmasks a new core-shell interface involving cyanurate ligand but also underlines the significance of high-electron-affinity N-heterocyclic ligand in synthesizing TADF metal nanoclusters. This is the first mixed valence Ag0/I nanocluster with TADF characteristic.

6.
Rapid Commun Mass Spectrom ; 35(10): e9075, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33648023

RESUMO

RATIONALE: Due to isotope fractionations during partial nitrogen release from minerals and rocks, the complete extraction of nitrogen for analysis is crucial to ensure high-quality nitrogen isotopic data. However, the appropriate nitrogen extraction conditions (e.g. temperature, duration) have not been established for most silicate minerals and rocks. METHODS: Nitrogen in a number of common minerals and rocks was extracted using the most robust sealed-tube offline combustion techniques, purified and quantified in a custom-made metal manifold, and carried by helium gas to an isotope ratio mass spectrometer for isotopic measurement at nanomolar nitrogen level. Each mineral or rock was combusted in a variety of temperature and duration conditions to compare the nitrogen yields and isotopic compositions. RESULTS: The nitrogen yields and isotopic compositions of minerals and rocks are strongly affected by combustion temperature and duration. The optimal combustion temperature is lowest for cyclosilicate minerals, followed by phyllosilicate, tectosilicate and inosilicate minerals. Preheating of samples can induce significant nitrogen loss and δ15 N shift. Heating of samples above their optimal temperatures may cause nitrogen re-assimilation by the residual mineral or rock. CONCLUSIONS: Each mineral or rock has a characteristic optimal temperature and duration for complete nitrogen release. Preheating, under-heating or over-heating can cause nitrogen loss and isotopic shift. Therefore, we recommend using the offline combustion techniques and the optimal combustion conditions obtained in this study for nitrogen quantification and isotopic analysis of silicate minerals and rocks.

7.
Angew Chem Int Ed Engl ; 60(6): 3138-3147, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33151024

RESUMO

Deep understanding of structure-property relationship between packing of chiral building units and their chiroptical behaviors would significantly facilitate the rational design and fabrication of the emerging chiroptical materials such as circularly polarized luminescence (CPL) emissive materials. In this paper, we unveil the universal existence of supramolecular tilt helical superstructures in self-assembled π-conjugated amino acid derivatives. A series of coded amino acid methyl esters were conjugated to anthracene segments at N-terminus, which afforded 21 and 31 symmetry supramolecular tilt chirality in solid-states. Helical assemblies enabled diversified Cotton effects and CPL performances, which were in accordance with the tilted chirality between anthracene segments. Such correlation shows fine universality, whereby the chiroptical prediction could be realized. Furthermore, on top of charge-transfer complexation, manipulation of CPL emission colors and handedness were realized.

8.
J Chem Phys ; 153(2): 024117, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668924

RESUMO

First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, essentially from the compiler up, possibly with the exception of linear-algebra and message-passing libraries. This model has endured and been quite successful for decades. The successful evolution of the electronic structure methodology itself, however, has resulted in an increasing complexity and an ever longer list of features expected within all software packages, which implies a growing amount of replication between different packages, not only in the initial coding but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure codes and redesign them as open-source libraries available to everybody. Such libraries include "heavy-duty" ones that have the potential for a high degree of parallelization and adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by, e.g., physicists and chemists when implementing new ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists (whether they be computer scientists or computational scientists) to use their skills more effectively and will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for new developers. The model comes with new challenges, though. The building and compilation of a code based on many interdependent libraries (and their versions) is a much more complex task than that of a code delivered in a single self-contained package. Here, we describe the state of the ESL, the different libraries it now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced. The ESL is a community initiative into which several pre-existing codes and their developers have contributed with their software and efforts, from which several codes are already benefiting, and which remains open to the community.

9.
Exp Cell Res ; 369(1): 147-157, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29787736

RESUMO

Accumulating evidence suggests a key role of BAP1 in oncogenesis, but mechanisms regulating BAP1 gene expression remain unexplored. In this report, we revealed that the BAP1 promoter contains multiple G-tracts in its negative strand with high potential of forming G-quadruplex (G4) structures. In circular dichroism studies, synthesized oligonucleotides within these G-rich regions upstream the BAP1 transcription start site showed molar ellipticity at specific wavelengths characteristic of G4 structures. Analyses of these oligonucleotides by native polyacrylamide gel electrophoresis revealed formation of multiple types of G4 structures. In reporter assays, mutations or deletion of predicted G4 structures reduced BAP1 promoter activity. Additionally, DNA helicases CHD2 and CHD7 could reduce BAP1 promoter activity, likely through unwinding its G4 structures.


Assuntos
DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Quadruplex G , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Sequência de Bases , Dicroísmo Circular , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Análise em Microsséries , Regiões Promotoras Genéticas/genética , Ligação Proteica , Deleção de Sequência , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo
10.
Nano Lett ; 17(9): 5264-5272, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28817772

RESUMO

The minority carrier diffusion length (LD) is a crucial property that determines the performance of light absorbers in photoelectrochemical (PEC) cells. Many transition-metal oxides are stable photoanodes for solar water splitting but exhibit a small to moderate LD, ranging from a few nanometers (such as α-Fe2O3 and TiO2) to a few tens of nanometers (such as BiVO4). Under operating conditions, the temperature of PEC cells can deviate substantially from ambient, yet the temperature dependence of LD has not been quantified. In this work, we show that measuring the photocurrent as a function of both temperature and absorber dimensions provides a quantitative method for evaluating the temperature-dependent minority carrier transport. By measuring photocurrents of nonstoichiometric rutile TiO2-x nanowires as a function of wire radius (19-75 nm) and temperature (10-70 °C), we extract the minority carrier diffusion length along with its activation energy. The minority carrier diffusion length in TiO2-x increases from 5 nm at 25 °C to 10 nm at 70 °C, implying that enhanced carrier mobility outweighs the increase in the recombination rate with temperature. Additionally, by comparing the temperature-dependent photocurrent in BiVO4, TiO2, and α-Fe2O3, we conclude that the ratio of the minority carrier diffusion length to the depletion layer width determines the extent of temperature enhancement, and reconcile the widespread temperature coefficients, which ranged from 0.6 to 1.7% K-1. This insight provides a general design rule to select light absorbers for large thermally activated photocurrents and to predict PEC cell characteristics at a range of temperatures encountered during realistic device operation.

11.
J Chem Theory Comput ; 20(8): 3131-3143, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598683

RESUMO

We propose a state-averaged orbital optimization scheme for improving the accuracy of excited states of the electronic structure Hamiltonian for use on near-term quantum computers. Instead of parameterizing the orbital rotation operator in the conventional fashion as an exponential of an antihermitian matrix, we parameterize the orbital rotation as a general partial unitary matrix. Whereas conventional orbital optimization methods minimize the state-averaged energy using successive Newton steps of the second-order Taylor expansion of the energy, the method presented here optimizes the state-averaged energy using an orthogonally constrained gradient projection method that does not require any expansion approximations. Through extensive benchmarking of the method on various small molecular systems, we find that the method is capable of producing more accurate results than fixed basis FCI while simultaneously using fewer qubits. In particular, we show that for H2, the method is capable of matching the accuracy of FCI in the cc-pVTZ basis (56 qubits) while only using 14 qubits.

12.
Carbohydr Polym ; 346: 122662, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245516

RESUMO

Chitosan materials are much important in adsorption, separation and water treatment due to their hydrophilicity, biodegradability and easy functionalization. However, they were difficult to form structural materials, which limited its application in engineering. In this paper, a new type of chitosan porous materials was prepared with two-step strategy involving the freezing crosslinking of chitosan with glutaraldehyde to form cryogels, and their subsequent reduction with NaBH4 to transform CN bonds into CN bonds, resulting in remarkable improvement of mechanical property. That is, the strength remained almost unchanged after 80 % deformation. The abundant -NH2 and -OH on the surface of materials, as well as the unique pore structure from cryogels, gave relatively high adsorption capacity for metals and dyes (88.73 ± 4.25 mg·g-1 for Cu(II) and 3261.05 ± 36.10 mg·g-1 for Congo red). The surface hydrophilicity of materials made it possible for selective water permeation with over 95 % separation efficiency for oil-water mixtures. In addition, simple hydrophobic modification using bromotetradecane achieved selective oil permeation with over 96 % separation efficiency for oil-water mixtures. This study not only provides a new strategy to endow chitosan materials with excellent mechanical property, large adsorption capacity and good oil-water separation performance, but also offers environmentally friendly materials for sewage treatment applications.

13.
J Chem Theory Comput ; 19(3): 790-798, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36696487

RESUMO

Near-term quantum computers will be limited in the number of qubits on which they can process information as well as the depth of the circuits that they can coherently carry out. To date, experimental demonstrations of algorithms such as the Variational Quantum Eigensolver (VQE) have been limited to small molecules using minimal basis sets for this reason. In this work we propose incorporating an orbital optimization scheme into quantum eigensolvers wherein a parametrized partial unitary transformation is applied to the basis functions set in order to reduce the number of qubits required for a given problem. The optimal transformation is found by minimizing the ground state energy with respect to this partial unitary matrix. Through numerical simulations of small molecules up to 16 spin orbitals, we demonstrate that this method has the ability to greatly extend the capabilities of near-term quantum computers with regard to the electronic structure problem. We find that VQE paired with orbital optimization consistently achieves lower ground state energies than traditional VQE when using the same number of qubits and even frequently achieves lower ground state energies than VQE methods using more qubits.

14.
J Chem Theory Comput ; 19(21): 7731-7739, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37870778

RESUMO

An efficient excited state method, named xCDFCI, in the configuration interaction framework is proposed. xCDFCI extends the unconstrained nonconvex optimization problem in coordinate descent full configuration interaction (CDFCI) to a multicolumn version for low-lying excited states computation. The optimization problem is addressed via a tailored coordinate descent method. In each iteration, a determinant is selected based on an approximated gradient, and coefficients of all states associated with the selected determinant are updated. A deterministic compression is applied to limit memory usage. We test xCDFCI applied to H2O and N2 molecules under the cc-pVDZ basis set. For both systems, five low-lying excited states in the same symmetry sector are calculated, together with the ground state. xCDFCI also produces accurate binding curves of the carbon dimer in the cc-pVDZ basis with chemical accuracy, where the ground state and four excited states in the same symmetry sector are benchmarked.

15.
Chem Sci ; 14(24): 6564-6571, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37350827

RESUMO

Ligand shells of gold nanoclusters play important roles in regulating their molecular and electronic structures. However, the similar but distinct impacts of the homologous analogues of the protecting ligands remain elusive. The C2v symmetric monoarsine-protected cluster [Au13(AsPh3)8Cl4]+ (Au13As8) was facilely prepared by direct reduction of (Ph3As)AuCl with NaBH4. This cluster is isostructural with its previously reported stibine analogue [Au13(SbPh3)8Cl4]+ (Au13Sb8), enabling a comparative study between them. Au13As8 exhibits a blue-shifted electronic absorption band, and this is probably related to the stronger π-back donation interactions between the Au13 core and AsPh3 ligands, which destabilize its superatomic 1P and 1D orbitals. In comparison to the thermodynamically less stable Au13Sb8, Au13As8 achieves a better trade-off between catalytic stability and activity, as demonstrated by its excellent catalytic performance towards the aldehyde-alkyne-amine (A3) coupling reaction. Moreover, the ligand exchange reactions between Au13As8 with phosphines, as exemplified by PPh3 and Ph2P(CH2)2PPh2, suggest that Au13As8 may be a good precursor cluster for further cluster preparation through the "cluster-to-cluster" route.

16.
J Chem Theory Comput ; 18(8): 4674-4689, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35876650

RESUMO

We propose a quantum-classical hybrid variational algorithm, the quantum orbital minimization method (qOMM), for obtaining the ground state and low-lying excited states of a Hermitian operator. Given parametrized ansatz circuits representing eigenstates, qOMM implements quantum circuits to represent the objective function in the orbital minimization method and adopts a classical optimizer to minimize the objective function with respect to the parameters in ansatz circuits. The objective function has an orthogonality constraint implicitly embedded, which allows qOMM to apply a different ansatz circuit to each input reference state. We carry out numerical simulations that seek to find excited states of H2, LiH, and a toy model consisting of four hydrogen atoms arranged in a square lattice in the STO-3G basis with UCCSD ansatz circuits. Comparing the numerical results with existing excited states methods, qOMM is less prone to getting stuck in local minima and can achieve convergence with more shallow ansatz circuits.

17.
Nat Commun ; 13(1): 1802, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379821

RESUMO

The structural transformations of metal nanoclusters are typically quite complex processes involving the formation and breakage of several bonds, and thus are challenging to study. Herein, we report a case where two lacunary Keggin polyoxometallate templated silver single-pods [PW9O34@Ag51] (SD/Ag51b) fuse to a double-pod [(PW9O34)2@Ag72] by reacting with 4,4'-bipyridine (bipy) or 1,4-bis(4-pyridinylmethyl)piperazine (pi-bipy). Their crystal structures reveal the formation of a 2D 44-sql layer (SD/Ag72a) with bipy and a 3D pcu framework (SD/Ag72c) with pi-bipy. The PW9O349- retains its structure during the cluster fusion and cluster-based network formation. Although the two processes, stripping of an Ag-ligands interface followed by fusion, and polymerization, are difficult to envisage, electrospray ionization mass spectrometry provides enough evidences for such a proposal to be made. Through this example, we expect the structural transformation to become a powerful method for synthesizing silver nanoclusters and their infinite networks, and to evolve from trial-and-error to rational.

18.
Chemistry ; 17(44): 12495-501, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22002484

RESUMO

Five phosphorescent metal-anion radical coordination polymers based on a new anion radical ligand generated by in situ deprotonation of a stable zwitterionic radical are described. The N,O,N-tripodal anion radical ligand links metal cations, which leads to five isostructural coordination polymers, [M(3)(bipo(-.))(4)(L)(2)](n) (M=Cd or Mn, Hbipo(-.)=2,3'-biimidazo[1,2-a]pyridin-2'-one, L=Cl(-), HCOO(-) or SCN(-)). The isostructural coordination polymers exhibit novel one-dimensional spirocycle-like structures. Three isostructural Cd(II) coordination polymers display unusual phosphorescent color changes (blue, yellow, and white) induced by terminal anions. Significantly, the Cd(II) coordination polymer with terminal Cl(-) possesses moderate quantum yield, and shows a bright white-light phosphorescence emission, which is independent of excitation wavelength and can even be excited by visible light. Upon adjusting the metal cation to Mn(II), two isostructural Mn(II) coordination polymers reveal deep-blue-light phosphorescence emissions that are independent of terminal anions. As radical-based coordination polymers, some of them show antiferromagnetic interactions between radical species or radical and metal center.

19.
ACS Nano ; 15(10): 16019-16029, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34592104

RESUMO

Controllable syntheses of Au nanoclusters (NCs) with different nuclearities are of great significance due to the kernel-dependent physicochemical properties. Herein, two pairs of enantiomeric Au NCs [Au19(R/S-BINAP)4(PhC≡C)Cl4] (SD/Au19) and [Au11(R/S-BINAP)4(PhC≡C)2]·Cl (SD/Au11), both with atropos (rigid axial chirality) diphosphine BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthalene) as the predominant organic ligands, were controllably synthesized through precursor engineering. The former was obtained by direct reduction of HAuCl4·4H2O, while the latter was obtained by reduction of [Au(SMe2)Cl] instead. Intriguingly, the kernel of SD/Au19 contains an Au7 pentagonal bipyramid capped by two boat-like Au6 rings, which represents another type of Au19 kernel, making SD/Au19 a good candidate for comparative study with other Au19 NCs to get more insight into the distinct structural evolution of phosphine-protected Au NCs. Despite the previous chiroptical studies on some other chiral undecagold NCs, the successful attainment of the X-ray crystal structures for SD/Au11 not only provides a step forward toward better correlating the chiroptical activities with their structural details but also reveals that even the auxiliary protecting ligands also play a nontrivial role in tuning the geometrical structures of the metal NCs. The chiroptical activities of both SD/Au19 and SD/Au11 were found to originate from the chiral ligands and core distortions; the extended π-electron systems in the BINAP ligands have proved to positively contribute to the electronic absorptions and thus disturb the corresponding circular dichroism (CD) responses.

20.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118951, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422616

RESUMO

Triple negative breast cancer (TNBC) has poor prognosis due to lack of biomarker and therapeutic target. Emerging research has revealed long noncoding RNAs (lncRNAs) are involved in breast cancer progression, but their functions and regulatory mechanisms remain poorly understood, especially in TNBC. In this study, we performed lncRNA microarray analysis of five TNBC samples and their matched normal tissues, and discovered a number of differentially expressed lncRNAs. We identified an antisense lncRNA, HYOU1-AS, which is transcribed from the opposite strand of the hypoxia up-regulated 1 (HYOU1) gene, enriched in the nucleus and highly expressed in TNBC. HYOU1-AS knockdown could inhibit the proliferation and migration of the TNBC MDA-MB-231 cells, and reduce their xenograft tumor formation in nude mice. In mechanistic studies, we found that HYOU1-AS could promote the expression of HYOU1, a proliferative gene, through competitively binding to hnRNPA1, an RNA-binding protein, to relieve its post-transcriptional inhibition of the HYOU1 mRNA. Consistently, increased HYOU1 levels correlated with poor clinical outcomes of breast cancer patients based on our study of the TCGA database. Overall, our data indicated that the lncRNA HYOU1-AS promoted TNBC progression through upregulating HYOU1.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Choque Térmico HSP70/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sobrevida , Ativação Transcricional , Neoplasias de Mama Triplo Negativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA