Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 24(6): e56282, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37009826

RESUMO

Human microproteins encoded by long non-coding RNAs (lncRNA) have been increasingly discovered, however, complete functional characterization of these emerging proteins is scattered. Here, we show that LINC00493-encoded SMIM26, an understudied microprotein localized in mitochondria, is tendentiously downregulated in clear cell renal cell carcinoma (ccRCC) and correlated with poor overall survival. LINC00493 is recognized by RNA-binding protein PABPC4 and transferred to ribosomes for translation of a 95-amino-acid protein SMIM26. SMIM26, but not LINC00493, suppresses ccRCC growth and metastatic lung colonization by interacting with acylglycerol kinase (AGK) and glutathione transport regulator SLC25A11 via its N-terminus. This interaction increases the mitochondrial localization of AGK and subsequently inhibits AGK-mediated AKT phosphorylation. Moreover, the formation of the SMIM26-AGK-SCL25A11 complex maintains mitochondrial glutathione import and respiratory efficiency, which is abrogated by AGK overexpression or SLC25A11 knockdown. This study functionally characterizes the LINC00493-encoded microprotein SMIM26 and establishes its anti-metastatic role in ccRCC, and therefore illuminates the importance of hidden proteins in human cancers.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , RNA Longo não Codificante , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Proliferação de Células/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/metabolismo , Micropeptídeos
2.
BMC Cancer ; 24(1): 649, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802821

RESUMO

BACKGROUND: Neoadjuvant immune checkpoint blockade (ICB) combined with chemoradiotherapy offers high pathologic complete response (pCR) rate for patients with locally advanced esophageal squamous cell carcinomas (ESCC). But the dynamic tumor immune microenvironment modulated by such neoadjuvant therapy remains unclear. PATIENTS AND METHODS: A total of 41 patients with locally advanced ESCC were recruited. All patients received neoadjuvant toripalimab combined with concurrent chemoradiotherapy. Matched pre- and post-treatment tissues were obtained for fluorescent multiplex immunohistochemistry (mIHC) and IHC analyses. The densities and spatial distributions of immune cells were determined by HALO modules. The differences of immune cell patterns before and after neoadjuvant treatment were investigated. RESULTS: In the pre-treatment tissues, more stromal CD3 + FoxP3 + Tregs and CD86+/CD163 + macrophages were observed in patients with residual tumor existed in the resected lymph nodes (pN1), compared with patients with pCR. The majority of macrophages were distributed in close proximity to tumor nest in pN1 patients. In the post-treatment tissues, pCR patients had less CD86 + cell infiltration, whereas higher CD86 + cell density was significantly associated with higher tumor regression grades (TRG) in non-pCR patients. When comparing the paired pre- and post-treatment samples, heterogeneous therapy-associated immune cell patterns were found. Upon to the treatment, CD3 + T lymphocytes were slightly increased in pCR patients, but markedly decreased in non-pCR patients. In contrast, a noticeable increase and a less obvious decrease of CD86 + cell infiltration were respectively depicted in non-pCR and pCR patients. Furthermore, opposite trends of the treatment-induced alterations of CD8 + and CD15 + cell infiltrations were observed between pN0 and pN1 patients. CONCLUSIONS: Collectively, our data demonstrate a comprehensive picture of tumor immune landscape before and after neoadjuvant ICB combined with chemoradiotherapy in ESCC. The infiltration of CD86 + macrophage may serve as an unfavorable indicator for neoadjuvant toripalimab combined with chemoradiotherapy.


Assuntos
Quimiorradioterapia , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Inibidores de Checkpoint Imunológico , Terapia Neoadjuvante , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/patologia , Terapia Neoadjuvante/métodos , Masculino , Feminino , Quimiorradioterapia/métodos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral/imunologia , Idoso , Adulto , Macrófagos/imunologia , Macrófagos/metabolismo
3.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677068

RESUMO

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Assuntos
Cádmio , Microplásticos , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Sorghum , Sorghum/efeitos dos fármacos , Sorghum/microbiologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Solo/química , Tamanho da Partícula , Bactérias/efeitos dos fármacos
4.
Ecotoxicol Environ Saf ; 264: 115439, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690172

RESUMO

Microplastics (MPs) can act as carriers for environmental pollutants; therefore, MPs combined with heavy metal pollution are attracting increasing attention from researchers. In this study, the potential of the plant growth-promoting bacterium Bacillus sp. SL-413 to mitigate the stress caused by exposure to both MPs and cadmium (Cd) in sorghum plants was investigated. The effects of inoculation on sorghum biomass were investigated using hydroponic experiments, and evaluation of Cd accumulation and enzyme activity changes and transcriptomics approaches were used to analyze its effect on sorghum gene expression. The results showed that combined polyethylene (PE) and Cd pollution reduced the length and the fresh and dry weights of sorghum plants and thus exerted a synergistic toxic effect. However, inoculation with the strains alleviated the stress caused by the combined pollution and significantly increased the biomass. Inoculation increased the dry weights of the aboveground and belowground parts by 11.5-44.6% and 14.9-38.4%, respectively. Plant physiological measurements indicated that inoculation reduced the reactive oxygen species (ROS) content of sorghum by 10.5-27.2% and thereby alleviated oxidative stress. Transcriptome sequencing showed that exposure to combined Cd+MP contamination induced downregulation of gene expression, particularly that of genes related to amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, and plant hormone signal transduction, in sorghum. However, inoculation with Bacillus sp. SL-413 resulted in an increase in the proportion of upregulated genes involved in signal transduction, antioxidant defense, cell wall biology, and other metabolic pathways, which included the phenylpropanoid biosynthesis, photosynthesis, flavonoid biosynthesis, and MAPK signaling pathways. The upregulation of these genes promoted the tolerance of sorghum under combined Cd+MP pollution stress and alleviated the stress induced by these conditions. This study provides the first demonstration that plant growth-promoting bacteria can alleviate the stress caused by combined pollution with MPs and Cd by regulating plant gene expression. These findings provide a reference for the combined plant-microbial remediation of MPs and Cd.


Assuntos
Bacillus , Sorghum , Cádmio/toxicidade , Antioxidantes , Plásticos , Microplásticos , Sorghum/genética , Bactérias , Bacillus/genética , Peso Corporal , Expressão Gênica
5.
Sensors (Basel) ; 23(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36991919

RESUMO

Glucose sensors based blood glucose detection are of great significance for the diagnosis and treatment of diabetes because diabetes has aroused wide concern in the world. In this study, bovine serum albumin (BSA) was used to cross-link glucose oxidase (GOD) on a glassy carbon electrode (GCE) modified by a composite of hydroxy fullerene (HFs) and multi-walled carbon nanotubes (MWCNTs) and protected with a glutaraldehyde (GLA)/Nafion (NF) composite membrane to prepare a novel glucose biosensor. The modified materials were analyzed by UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), and cyclic voltammetry (CV). The prepared MWCNTs-HFs composite has excellent conductivity, the addition of BSA regulates MWCNTs-HFs hydrophobicity and biocompatibility, and better immobilizes GOD on MWCNTs-HFs. MWCNTs-BSA-HFs plays a synergistic role in the electrochemical response to glucose. The biosensor shows high sensitivity (167 µA·mM-1·cm-2), wide calibration range (0.01-3.5 mM), and low detection limit (17 µM). The apparent Michaelis-Menten constant Kmapp is 119 µM. Additionally, the proposed biosensor has good selectivity and excellent storage stability (120 days). The practicability of the biosensor was evaluated in real plasma samples, and the recovery rate was satisfactory.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Nanotubos de Carbono , Glucose/química , Nanotubos de Carbono/química , Glucose Oxidase/química , Soroalbumina Bovina/química , Técnicas Biossensoriais/métodos , Eletrodos , Nanocompostos/química , Enzimas Imobilizadas/química , Técnicas Eletroquímicas/métodos
6.
Gerontology ; 68(5): 488-497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34320506

RESUMO

INTRODUCTION: The default mode network (DMN) is selectively vulnerable in brain aging. Little is known about the effect of multimorbidity as a whole onto the brain structural integrity. OBJECTIVE: We aimed to investigate the association between multimorbidity and the structural integrity of DMN. METHODS: We enrolled senior volunteers aged between 60 and 80 years in Hualien County during 2014-2018 and conducted in-person interview to collect information on chronic diseases. Fasting blood glucose and glycated hemoglobin (HbA1c) were tested. We assessed multimorbidity burden by the cumulative illness rating scale-geriatric (CIRS-G). MRI brain scans were standardized to measure the regional volume within the DMN. In a cross-sectional design, we employed stepwise regression models to evaluate the effects of age, sex, hyperglycemia, and multimorbidity on the DMN. RESULTS: A total of 170 volunteers were enrolled with a mean age of 66.9 years, female preponderance (71%), an average mini-mental state examination score of 27.6, a mean HbA1c of 6.0, and a mean CIRS-G total score (TS) of 7.2. We found that older age was associated with reduced volumes in the hippocampus, left rostral anterior cingulate cortex, right posterior cingulate, right isthmus, precuneus, and right supramarginal. Higher levels of HbA1c and fasting glucose were associated with a reduced volume in the hippocampus only. A higher CIRS-G-TS was associated with reduced volumes in the left posterior cingulate cortex and right supramarginal gyrus; while a higher CIRS-G severity index was associated with a smaller right precuneus and right supramarginal. CONCLUSIONS: In the DMN, hippocampal volume shows vulnerability to aging and hyperglycemia, whereas the posterior cingulate, supramarginal, and precuneus cortices may be the key sites to reflect the total effects of multimorbidity.


Assuntos
Rede de Modo Padrão , Hiperglicemia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Encéfalo/diagnóstico por imagem , Estudos Transversais , Feminino , Hemoglobinas Glicadas , Humanos , Hiperglicemia/epidemiologia , Imageamento por Ressonância Magnética , Masculino , Multimorbidade
7.
Dement Geriatr Cogn Disord ; 50(1): 43-50, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33789290

RESUMO

INTRODUCTION: The lack of longitudinal data of comorbidity burden makes the association between comorbidity and cognitive decline inconclusive. We aimed to measure comorbidity and assess its effects on cognitive decline in mild to moderate dementia. METHODS: This was a prospective cohort study. The participants were enrolled from the Hualien Tzu Chi Hospital between January 2015 and December 2018. We enrolled 175 older adults with mild to moderate dementia and conducted in-person interviews to follow-up comorbidity and cognitive function annually. The comorbidity burden indices included Cumulative Illness Rating Scale for Geriatrics (CIRS-G), Charlson Comorbidity Index (CCI), and Medication Regimen Complexity Index (MRCI), and cognitive function was measured by Mini-Mental State Examination (MMSE) and clock drawing test. We employed the generalized estimating equations to assess the longitudinal effect of time-varying comorbidity burden on cognitive decline after adjusting for age, sex, and education. RESULTS: Most patients were diagnosed with Alzheimer's disease (88.6%) and in the early stage of dementia (Clinical Dementia Rating [CDR] = 0.5, 57.1%; CDR = 1, 36.6%). Multimorbidity was common (median: 3), and the top 3 most common comorbidities were osteoarthritis (67.4%), hypertension (65.7%), and hyperlipidemia (36.6%). The severity index of CIRS-G was significantly associated with cognitive decline in MMSE after adjusting for age, sex, and education. CCI and MRCI scores were, however, not associated with cognitive function. CONCLUSION: The severity index of CIRS-G outperforms CCI and MRCI in reflecting the longitudinal effect of comorbidity burden on cognitive decline in mild to moderate dementia.


Assuntos
Doença de Alzheimer/epidemiologia , Doença de Alzheimer/psicologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/diagnóstico , Comorbidade , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Estudos Prospectivos
8.
Acta Pharmacol Sin ; 42(11): 1921-1929, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33633363

RESUMO

Immune checkpoint inhibition is an important strategy in cancer therapy. Blockade of CTLA-4 and PD-1/PD-L1 is well developed in clinical practice. In the last few years, LAG-3 has received much interest as an emerging novel target in immunotherapy. It was recently reported that FGL1 is a major ligand of LAG-3, which is normally secreted by the liver but is upregulated in several human cancers. FGL1 is a crucial biomarker and target for cancer immunotherapy. As the efficacy of immunotherapy is limited to specific types of patients, the subset of patients needs to be selected appropriately to receive precise treatment according to different biomarkers. To date, there is no test to accurately assess FGL1 expression levels. Nanobodies have some outstanding features, such as high stability, solubility and affinity for diagnostic and therapeutic applications. Here, we report the development and validation of a rapid, sensitive, and cost-effective nanobody-based immunoassay for the detection of FGL1 in human serum. In this study, human FGL1 recombinant protein was expressed and purified for the first time as an immunized antigen. Then, we constructed a nanobody phage display library and screened several nanobodies that bind FGL1 with high affinity. We selected two nanobodies targeting different epitopes of FGL1, one as a capture and the other conjugated with HRP as a probe. The double nanobody-based sandwich ELISA to detect the concentration of FGL1 showed a good response relationship in the range of 15.625-2000 ng/mL, and the recoveries from the spiked sample were in the range of 78% and 100%. This assay could be used as a potential approach for evaluating FGL1 expression for patient stratification and for predicting the therapeutic efficacy of targeting the LAG3/FGL1 axis.


Assuntos
Fibrinogênio/imunologia , Fibrinogênio/metabolismo , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Animais , Camelus , Ensaio de Imunoadsorção Enzimática/métodos , Células HEK293 , Humanos , Imunoensaio/métodos
9.
J Cell Biochem ; 121(8-9): 3861-3870, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31692057

RESUMO

Renal tubular epithelial cells may undergo epithelial-mesenchymal transition (EMT) in response to stimuli, such as transforming growth factor (TGF)-ß1, leading to myofibroblast activation and renal fibrosis. The formin mDia1 is required for nucleation and polymerization of actin and the microtubule cytoskeleton. The present study sought to explore the role of mDia1 in EMT of tubular epithelial cells. A rat model of unilateral ureteral obstruction (UUO) was established. The expression of TGF-ß1, collagen I, collagen III, and mDia1 in the kidneys was examined at day 7 after surgery. The effect of mDia1 on EMT was explored in NRK-52E cells by exposing them to TGF-ß1. Increased expression of TGF-ß1, collagen I, collagen III, and mDia1 was found in obstructive kidneys of UUO model rats. Exposing rat tubular epithelial cells to TGF-ß1 promoted collagen I and collagen III expression but had no effect on mDia1 expression. Silencing mDia1 expression impeded epithelial cell migration as well as reduced TGF-ß1, collagen, and Profilin1 expression, whereas mDia1 overexpression exerted an opposite effect. Furthermore, mDia1 regulated the expression of vimentin, α-smooth muscle actin, and E-cadherin and focal adhesion-kinase (FAK)/Src activation through Profilin1. Inhibition of the mDia1 activator RhoA by fasudil reversed EMT, and FAK/Src activation induced by mDia1. In conclusion, mDia1 regulated tubular epithelial cell migration, collagen expression, and EMT in NRK-52E cells exposed to TGF-ß1. Thus, suppression of mDia1 activation might be a strategy to counteract renal fibrosis.

10.
Arch Microbiol ; 202(4): 859-873, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31894394

RESUMO

Network analysis has contributed to studies of the interactions of microorganisms and the identification of key populations. However, such analysis has rarely been conducted in the study of reservoir bacterioplankton communities. This study investigated the bacterioplankton community composition in the surface water of the Danjiangkou Reservoir using the Illumina MiSeq sequencing platform. We observed that the bacterioplankton community primarily consisted of 27 phyla and 336 genera, including Actinobacteria, Proteobacteria, and Bacteroidetes, demonstrating the richness of the community composition. Redundancy analysis of the bacterioplankton communities and environmental variables showed that the total nitrogen (TN), pH, chemical oxygen demand (COD), and permanganate index (CODMn) were important factors affecting the bacterioplankton distribution. Network analysis was performed using the relative abundances of bacterioplankton based on the phylogenetic molecular ecological network (pMEN) method. The connectivity of node i within modules (Zi), the connectivity of node i among modules (Pi), and the number of key bacteria were high at the Taizishan and Heijizui sites, which were associated with higher TN contents than at the other sites. Among the physicochemical properties of water, TN, ammonia nitrogen (NH4-N), pH, COD, and dissolved oxygen (DO) might have great influences on the functional units of the bacterial communities in bacterioplankton molecular networks. This study improves the understanding of the structure and function of bacterioplankton communities in the Danjiangkou Reservoir.


Assuntos
Organismos Aquáticos/classificação , Bactérias/classificação , Bactérias/genética , Água Doce/microbiologia , Plâncton/classificação , Plâncton/genética , Biodiversidade , China , Demografia , Água Doce/química , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Plâncton/microbiologia
11.
J Adv Nurs ; 76(6): 1416-1424, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32108382

RESUMO

AIMS: To evaluate the effectiveness and safety of Xin Huang Pian skin patches for patients with acute gouty arthritis. BACKGROUND: In China, patients with acute gouty arthritis benefit from skin patcheses with herbal medicines. But the clinical effects of skin patches with Xin Huang Pian are rarely reported. DESIGN: A Randomized, Double-Blind, Active-Controlled Trial. METHODS: The trial was performed from January 2015-December 2018 at the First Affiliated Hospital of Sun Yat-sen University in China. It was conducted with one intervention group (skin patches of Xin Huang Pian, N = 30) and one active control group (skin patches of Diclofenac Diethylamine Emulgel, N = 31). Participants and study investigators were both blinded to the treatment assignments. The primary outcomes were the improvement of joints' symptoms. The secondary outcomes were changes in white blood cells, erythrocyte sedimentation rate and C-reactive protein. RESULTS: Skin patches of Xin Huang Pian showed quick effect on decreasing joint pain at 3rd day of treatment. Wherever only at 7th day, Diclofenac Diethylamine Emulgel markedly lowered joint pain. Xin Huang Pian also showed superior effect than Diclofenac Diethylamine Emulgel on improving joint swelling and range of motion and decreasing the levels of C-reactive protein and erythrocyte sedimentation rate. No adverse reactions were observed in skin patches of Xin Huang Pian treatment. CONCLUSION: Skin patches of Xin Huang Pian appeared to be safe and efficacious for relieving joint symptoms in patients with acute gouty arthritis. The mechanism might be associated with the decreased levels of C-reactive protein and erythrocyte sedimentation rate. IMPACT: Skin-patcheses with Xin Huang Pian are more effective than Diclofenac Diethylamine Emulgel on improving joint pain, swelling and range of motion. Xin Huang Pian treatment showed superior effects compared with Diclofenac Diethylamine Emulgel on decreasing levels of C-reactive protein and erythrocyte sedimentation rate. Patients with acute gouty arthritis may benefit from skin patches of Xin Huang Pian for effective relief from joint pain and swelling. Chinese Clinical Trial Registration: ChiCTR-TRC-1300 4122.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Artrite Gotosa/tratamento farmacológico , Diclofenaco/uso terapêutico , Dietilaminas/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Supressores da Gota/uso terapêutico , Administração Cutânea , Analgésicos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , China , Diclofenaco/administração & dosagem , Método Duplo-Cego , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Supressores da Gota/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Fitoterapia , Distribuição Aleatória
12.
Int J Geriatr Psychiatry ; 34(12): 1900-1906, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31486134

RESUMO

OBJECTIVES: To describe the distribution and estimate the mortality risks of degenerative dementias and nondegenerative conditions in a memory clinic. METHODS: We enrolled 727 consecutive patients with cognitive complaints who visited the memory clinic in Buddhist Tzu Chi General Hospital during 2013 to 2016. Three main diagnostic groups were defined: pure type dementia, in which only one type of dementia was diagnosed, such as Alzheimer disease (AD), vascular dementia (VaD), Parkinson disease with dementia (PDD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD); mixed type dementia; and nondegenerative conditions. We described the frequency of different diagnoses and employed Cox proportional hazards regression models to examine the mortality risks for each diagnostic group after adjusting for age, sex, education, and cognitive status. All patients alive on or after September 30, 2018, were censored in the analysis. RESULTS: Two-thirds of patients (n = 496, 68.2%) were diagnosed with degenerative dementias. Pure type to mixed type dementia ratio was about 2: 1. AD remained the most common pure dementia subtype, followed by VaD and PDD. Among all nondegenerative conditions, depression/anxiety and subjective cognitive decline were the most common diagnoses. During a mean follow-up of 3.4 years, 150 deaths were documented, and the mortality risk was 61 deaths/1000 person-years. Mortality risks were associated with age, sex, education, and cognitive function at diagnosis but did not differ by diagnostic group. CONCLUSIONS: Clinical diagnoses for patients with cognitive complaints are diverse, and nearly one-third are of nondegenerative conditions. Baseline cognitive function is a stronger predictor for survival than clinical diagnosis.


Assuntos
Doença de Alzheimer/epidemiologia , Demência/epidemiologia , Doença de Parkinson/epidemiologia , Idoso , Doença de Alzheimer/mortalidade , Instituições de Assistência Ambulatorial/estatística & dados numéricos , Disfunção Cognitiva/epidemiologia , Demência/mortalidade , Demência Vascular/epidemiologia , Feminino , Seguimentos , Demência Frontotemporal/epidemiologia , Demência Frontotemporal/mortalidade , Humanos , Doença por Corpos de Lewy/epidemiologia , Masculino , Doença de Parkinson/mortalidade , Modelos de Riscos Proporcionais
13.
Proc Natl Acad Sci U S A ; 113(23): 6496-501, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217575

RESUMO

Plant diversity in experimental systems often enhances ecosystem productivity, but the mechanisms causing this overyielding are only partly understood. Intercropping faba beans (Vicia faba L.) and maize (Zea mays L.) result in overyielding and also, enhanced nodulation by faba beans. By using permeable and impermeable root barriers in a 2-y field experiment, we show that root-root interactions between faba bean and maize significantly increase both nodulation and symbiotic N2 fixation in intercropped faba bean. Furthermore, root exudates from maize promote faba bean nodulation, whereas root exudates from wheat and barley do not. Thus, a decline of soil nitrate concentrations caused by intercropped cereals is not the sole mechanism for maize promoting faba bean nodulation. Intercropped maize also caused a twofold increase in exudation of flavonoids (signaling compounds for rhizobia) in the systems. Roots of faba bean treated with maize root exudates exhibited an immediate 11-fold increase in the expression of chalcone-flavanone isomerase (involved in flavonoid synthesis) gene together with a significantly increased expression of genes mediating nodulation and auxin response. After 35 d, faba beans treated with maize root exudate continued to show up-regulation of key nodulation genes, such as early nodulin 93 (ENOD93), and promoted nitrogen fixation. Our results reveal a mechanism for how intercropped maize promotes nitrogen fixation of faba bean, where maize root exudates promote flavonoid synthesis in faba bean, increase nodulation, and stimulate nitrogen fixation after enhanced gene expression. These results indicate facilitative root-root interactions and provide a mechanism for a positive relationship between species diversity and ecosystem productivity.


Assuntos
Fixação de Nitrogênio , Raízes de Plantas/metabolismo , Vicia faba/metabolismo , Zea mays/metabolismo , Agricultura/métodos , Expressão Gênica , Genisteína/metabolismo , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/química
14.
Int J Psychiatry Med ; 51(6): 554-562, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-28629298

RESUMO

Background Obstructive sleep apnea involves repeated nocturnal desaturation and sleep fragmentation that leads to poor sleep quality, anxiety, and depression. This study aimed to investigate short- and long-term improvements in the anxiety and depression of patients with different obstructive sleep apnea treatments. Methods This is a prospective, non-randomized hospital-based study evaluated 55 patients (46 male, 9 female) with obstructive sleep apnea. The patients were divided into three groups based on different treatment: uvulopalatopharyngoplasty group, continuous positive airway pressure group, and no treatment group (by their own decision). They completed the Beck Depression Inventory II, Beck Anxiety Inventory, and Pittsburgh Sleep Quality Index before treatment and at one and six months after treatment. Results Compared to the no treatment group, the surgery and continuous positive airway pressure groups had higher body mass index, AHI, and Epworth sleepiness scale, but no difference in Pittsburgh Sleep Quality Index, Chinese Health Questionnaire-12, Beck Depression Inventory II, and Beck Anxiety Inventory. The continuous positive airway pressure and surgery groups still had no improvements in Pittsburgh Sleep Quality Index, Chinese Health Questionnaire-12, Beck Depression Inventory II, and Beck Anxiety Inventory scores one month after treatment. At six months after treatment, the continuous positive airway pressure group had significantly decreased Pittsburgh Sleep Quality Index, Chinese Health Questionnaire-12, Beck Depression Inventory II, and Beck Anxiety Inventory, whereas the surgery group had significant difference in Beck Anxiety Inventory only and the no treatment group still had no significant difference in any of the parameters. Conclusions Continuous positive airway pressure can improve the sleep quality, quality of life, depression, and anxiety of obstructive sleep apnea patients after six months of treatment. However, surgery can significantly improve anxiety only in the same period.


Assuntos
Ansiedade/terapia , Pressão Positiva Contínua nas Vias Aéreas , Depressão/terapia , Qualidade de Vida , Apneia Obstrutiva do Sono/terapia , Adulto , Idoso , Ansiedade/complicações , Ansiedade/psicologia , Índice de Massa Corporal , Depressão/complicações , Depressão/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/psicologia , Inquéritos e Questionários , Resultado do Tratamento
15.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 44(1): 95-100, 2015 01.
Artigo em Zh | MEDLINE | ID: mdl-25851983

RESUMO

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases. MMPs can degrade and remodel extracellular matrix, also active or inactive many molecules attaching to matrix including receptors, growth factors and cytokines, so that injury-induced MMPs can change the extracellular environment to affect the axonal regeneration in central nervous system. In this review, with spinal cord injury (SCI) as an example we discuss the effects of MMPs on inflammation, neuronal viability, extracellular molecules, glial scar and axonal remyelination, which are all important to axonal regeneration.


Assuntos
Axônios , Metaloproteinases da Matriz , Regeneração Nervosa , Cicatriz , Matriz Extracelular , Neuroglia , Traumatismos da Medula Espinal
16.
Huan Jing Ke Xue ; 45(1): 480-488, 2024 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-38216497

RESUMO

Microplastics can become potential transport carriers of other environmental pollutants (such as heavy metals), so the combined pollution of microplastics and heavy metals has attracted increasing attention from researchers. To explore the mechanism of plant growth-promoting bacteria VY-1 alleviating the combined pollution stress of heavy metals and microplastics in sorghum, the effects of inoculation on biomass and accumulation of heavy metals in sorghum were analyzed using a hydroponics experiment, and the effects of inoculation on gene expression in sorghum were analyzed via transcriptomics. The results showed that the combined pollution of polyethylene (PE) and cadmium (Cd) decreased the dry weight of above-ground and underground parts by 17.04% and 10.36%, respectively, compared with that under the single Cd pollution, which showed that the combined toxicity effect of the combined pollution on plant growth was enhanced. The inoculation of plant growth-promoting bacteria VY-1 could alleviate the toxicity of Cd-PE combined pollution and increase the length of aboveground and underground parts by 33.83% and 73.21% and the dry weight by 56.64% and 33.44%, respectively. Transcriptome sequencing showed that 904 genes were up-regulated after inoculation with VY-1. Inoculation with growth-promoting bacteria VY-1 could up-regulate the expression of several genes in the auxin, abscisic acid, flavonoid synthesis, and lignin biosynthesis pathways, which promoted the response ability of sorghum under Cd-PE combined pollution stress and improved its resistance. The above results indicated that plant growth-promoting bacteria could alleviate the stress of heavy metal and microplastic combined pollution by regulating plant gene expression, which provided a reference for plant-microbial joint remediation of heavy metal and microplastic combined pollution.


Assuntos
Metais Pesados , Poluentes do Solo , Sorghum , Cádmio/análise , Microplásticos , Plásticos , Sorghum/genética , Sorghum/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Bactérias/genética , Bactérias/metabolismo , Perfilação da Expressão Gênica , Poluentes do Solo/análise , Biodegradação Ambiental , Solo
17.
Huan Jing Ke Xue ; 45(2): 1161-1172, 2024 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-38471953

RESUMO

With the vigorous development of agriculture in China, plastic mulch film and pesticides are widely used in agricultural production. However, the accumulation of microplastics (formed by the degradation of plastic mulch film) and pesticides in soil has also caused many environmental problems. At present, the environmental biological effects of microplastics or pesticides have been reported, but there are few studies on the combined effects on crop growth and the rhizosphere soil bacterial community. Therefore, in this study, the high density polyethylene microplastics (HDPE, 500 mesh) were designed to be co-treated with sulfonylurea herbicide chlorimuron-ethyl to study their effects on soybean growth. In addition, the effects of the combined stress of HDPE and chlorimuron-ethyl on soybean rhizosphere soil bacterial community diversity, structure composition, microbial community network, and soil function were investigated using high-throughput sequencing technology, interaction network, and PICRUSt2 function analysis to clarify the combined toxicity of HDPE and chlorimuron-ethyl to soybean. The results showed that the half-life of chlorimuron-ethyl in soil was prolonged by the 1% HDPE treatment (from 11.5 d to 14.3 d), and the combined stress of HDPE and chlorimuron-ethyl had more obvious inhibition effects on soybean growth than that of the single pollutant or control. The HiSeq 2 500 sequencing showed that the rhizosphere bacterial community of soybean was composed of 20 phyla and 312 genera under combined stress, the number of phyla and genera was significantly less than that of the control and single pollutant treatment, and the relative abundances of bacteria with potential biological control and plant growth-promoting characteristics (such as Nocardioides and Sphingomonas) were reduced. Alpha diversity analysis showed that the combined stress significantly reduced the richness and diversity of the soybean rhizosphere bacterial community, and Beta diversity analysis showed that the combined stress significantly changed the structure of the bacterial community. The dominant flora of the rhizosphere bacterial community were regulated, and the abundances of secondary functional layers such as amino acid metabolism, energy metabolism, and lipid metabolism were reduced under combined stress by the analysis of LEfSe and PICRUSt2. It was inferred from the network analysis that the combined stress of HDPE and chlorimuron-ethyl reduced the total number of connections and network density of soil bacteria, simplified the network structure, and changed the important flora species to maintain the stability of the network. The results above indicated that the combined stress of HDPE and chlorimuron-ethyl significantly affected the growth of soybean and changed the rhizosphere bacterial community structure, soil function, and network structure. Compared with that of the single pollutant treatment, the potential risk of combined stress was greater. The results of this study can provide guidance for evaluating the ecological risks of polyethylene microplastics and chlorimuron-ethyl and for the remediation of contaminated soil.


Assuntos
Poluentes Ambientais , Herbicidas , Pirimidinas , Compostos de Sulfonilureia , Polietileno/metabolismo , Polietileno/farmacologia , Rizosfera , Glycine max , Microplásticos , Plásticos , Bactérias , Solo , Microbiologia do Solo
18.
Environ Pollut ; 355: 124201, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38810675

RESUMO

Combined microplastic and heavy metal pollution (CM-HP) has become a popular research topic due to the ability of these pollutants to have complex interactions. Plant growth-promoting rhizobacteria (PGPR) are widely used to alleviate stress from heavy metal pollution in plants. However, the effects and mechanisms by which these bacteria interact under CM-HP have not been extensively studied. In this study, we isolated and screened PGPR from CM-HP soils and analyzed the effects of these PGPR on sorghum growth and Cd accumulation under combined PVC+Cd pollution through pot experiments. The results showed that the length and biomass of sorghum plants grown in PVC+Cd contaminated soil were significantly lower than those grown in soils contaminated with Cd alone, revealing an enhancement in toxicity when the two contaminants were mixed. Seven isolated and screened PGPR strains effectively alleviated stress due to PVC+Cd contamination, which resulted in a significant enhancement in sorghum biomass. PGPR mitigated the decrease in soil available potassium, available phosphorus and alkali-hydrolyzable nitrogen content caused by combined PVC+Cd pollution and increased the contents of these soil nutrients. Soil treatment with combined PVC+Cd pollution and PGPR inoculation can affect rhizosphere bacterial communities and change the composition of dominant populations, such as Proteobacteria, Firmicutes, and Actinobacteria. PICRUSt2 functional profile prediction revealed that combined PVC+Cd pollution and PGPR inoculation affected nitrogen fixation, nitrification, denitrification, organic phosphorus mineralization, inorganic phosphorus solubilization and the composition and abundance of genes related the N and P cycles. The Mantel test showed that functional strain abundance, the diversity index and N and P cycling-related genes were affected by test strain inoculation and were significant factors affecting sorghum growth, Cd content and accumulation. This study revealed that soil inoculation with isolated and screened PGPR can affect the soil inorganic nutrient content and bacterial community composition, thereby alleviating the stress caused by CM-HP and providing a theoretical basis and data support for the remediation of CM-HP.


Assuntos
Cádmio , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Sorghum , Sorghum/microbiologia , Poluentes do Solo/toxicidade , Cádmio/toxicidade , Solo/química , Biodegradação Ambiental , Bactérias/metabolismo , Cloreto de Polivinila
19.
J Hazard Mater ; 469: 134085, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522197

RESUMO

Composite pollution by microplastics and heavy metals poses a potential threat to the soilplant system and has received increasing attention. Plant growth-promoting bacteria (PGPB) have good application potential for the remediation of combined microplastic and heavy metal pollution, but few related studies exist. The present study employed a pot experiment to investigate the effects of inoculation with the PGPB Bacillus sp. SL-413 and Enterobacter sp. VY-1 on sorghum growth and Cd accumulation under conditions of combined cadmium (Cd) and polyethylene (PE) pollution. Cd+PE composite contamination led to a significant reduction in sorghum length and biomass due to increased toxicity. Inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the stress caused by Cd+PE complex pollution, and the dry weight of sorghum increased by 25.7% to 46.1% aboveground and by 12.3% to 45.3% belowground. Bacillus sp. SL-413 and Enterobacter sp. VY-1 inoculation increased the Cd content and accumulation in sorghum and improved the phytoremediation efficiency of Cd. The inoculation treatment effectively alleviated the nutrient stress caused by the reduction in soil mineral nutrients due to Cd+PE composite pollution. The composition of the soil bacterial communities was also affected by the Cd, Cd+PE and bacterial inoculation treatments, which affected the diversity of the soil bacterial communities. Network analyses indicated that bacterial inoculation regulated the interaction of rhizospheric microorganisms and increased the stability of soil bacterial communities. The Mantel test showed that the changes in the soil bacterial community and function due to inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 were important factors influencing sorghum growth and Cd remediation efficiency. The results of this study will provide new evidence for the research on joint plantmicrobe remediation of heavy metal and microplastic composite pollution.


Assuntos
Bacillus , Metais Pesados , Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Plásticos , Polietileno , Solo , Rizosfera , Microplásticos , Metais Pesados/toxicidade , Metais Pesados/análise , Enterobacter , Poluentes do Solo/análise
20.
Microorganisms ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38792702

RESUMO

The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA